This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ttukey . Expand out the property of being an element of a property of finite character. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ttukeylem.1 | ⊢ ( 𝜑 → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) | |
| ttukeylem.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| ttukeylem.3 | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) | ||
| Assertion | ttukeylem1 | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttukeylem.1 | ⊢ ( 𝜑 → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) | |
| 2 | ttukeylem.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 3 | ttukeylem.3 | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) | |
| 4 | elex | ⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ V ) | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝐴 → 𝐶 ∈ V ) ) |
| 6 | id | ⊢ ( ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 → ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) | |
| 7 | ssun1 | ⊢ ∪ 𝐴 ⊆ ( ∪ 𝐴 ∪ 𝐵 ) | |
| 8 | undif1 | ⊢ ( ( ∪ 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( ∪ 𝐴 ∪ 𝐵 ) | |
| 9 | 7 8 | sseqtrri | ⊢ ∪ 𝐴 ⊆ ( ( ∪ 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) |
| 10 | fvex | ⊢ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ V | |
| 11 | f1ofo | ⊢ ( 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) | |
| 12 | 1 11 | syl | ⊢ ( 𝜑 → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) |
| 13 | focdmex | ⊢ ( ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ V → ( 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –onto→ ( ∪ 𝐴 ∖ 𝐵 ) → ( ∪ 𝐴 ∖ 𝐵 ) ∈ V ) ) | |
| 14 | 10 12 13 | mpsyl | ⊢ ( 𝜑 → ( ∪ 𝐴 ∖ 𝐵 ) ∈ V ) |
| 15 | unexg | ⊢ ( ( ( ∪ 𝐴 ∖ 𝐵 ) ∈ V ∧ 𝐵 ∈ 𝐴 ) → ( ( ∪ 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∈ V ) | |
| 16 | 14 2 15 | syl2anc | ⊢ ( 𝜑 → ( ( ∪ 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∈ V ) |
| 17 | ssexg | ⊢ ( ( ∪ 𝐴 ⊆ ( ( ∪ 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∧ ( ( ∪ 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∈ V ) → ∪ 𝐴 ∈ V ) | |
| 18 | 9 16 17 | sylancr | ⊢ ( 𝜑 → ∪ 𝐴 ∈ V ) |
| 19 | uniexb | ⊢ ( 𝐴 ∈ V ↔ ∪ 𝐴 ∈ V ) | |
| 20 | 18 19 | sylibr | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 21 | ssexg | ⊢ ( ( ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ∧ 𝐴 ∈ V ) → ( 𝒫 𝐶 ∩ Fin ) ∈ V ) | |
| 22 | 6 20 21 | syl2anr | ⊢ ( ( 𝜑 ∧ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) → ( 𝒫 𝐶 ∩ Fin ) ∈ V ) |
| 23 | infpwfidom | ⊢ ( ( 𝒫 𝐶 ∩ Fin ) ∈ V → 𝐶 ≼ ( 𝒫 𝐶 ∩ Fin ) ) | |
| 24 | reldom | ⊢ Rel ≼ | |
| 25 | 24 | brrelex1i | ⊢ ( 𝐶 ≼ ( 𝒫 𝐶 ∩ Fin ) → 𝐶 ∈ V ) |
| 26 | 22 23 25 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) → 𝐶 ∈ V ) |
| 27 | 26 | ex | ⊢ ( 𝜑 → ( ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 → 𝐶 ∈ V ) ) |
| 28 | eleq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 29 | pweq | ⊢ ( 𝑥 = 𝐶 → 𝒫 𝑥 = 𝒫 𝐶 ) | |
| 30 | 29 | ineq1d | ⊢ ( 𝑥 = 𝐶 → ( 𝒫 𝑥 ∩ Fin ) = ( 𝒫 𝐶 ∩ Fin ) ) |
| 31 | 30 | sseq1d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) ) |
| 32 | 28 31 | bibi12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ↔ ( 𝐶 ∈ 𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) ) ) |
| 33 | 32 | spcgv | ⊢ ( 𝐶 ∈ V → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) → ( 𝐶 ∈ 𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) ) ) |
| 34 | 3 33 | syl5com | ⊢ ( 𝜑 → ( 𝐶 ∈ V → ( 𝐶 ∈ 𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) ) ) |
| 35 | 5 27 34 | pm5.21ndd | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) ) |