This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013) (Revised by Mario Carneiro, 29-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordunifi | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∪ 𝐴 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epweon | ⊢ E We On | |
| 2 | weso | ⊢ ( E We On → E Or On ) | |
| 3 | 1 2 | ax-mp | ⊢ E Or On |
| 4 | soss | ⊢ ( 𝐴 ⊆ On → ( E Or On → E Or 𝐴 ) ) | |
| 5 | 3 4 | mpi | ⊢ ( 𝐴 ⊆ On → E Or 𝐴 ) |
| 6 | fimax2g | ⊢ ( ( E Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ) | |
| 7 | 5 6 | syl3an1 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ) |
| 8 | ssel2 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) | |
| 9 | 8 | adantlr | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) |
| 10 | ssel2 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) | |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ On ) |
| 12 | epel | ⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) | |
| 13 | 12 | notbii | ⊢ ( ¬ 𝑥 E 𝑦 ↔ ¬ 𝑥 ∈ 𝑦 ) |
| 14 | ontri1 | ⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑦 ) ) | |
| 15 | 13 14 | bitr4id | ⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) → ( ¬ 𝑥 E 𝑦 ↔ 𝑦 ⊆ 𝑥 ) ) |
| 16 | 9 11 15 | syl2anc | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝑥 E 𝑦 ↔ 𝑦 ⊆ 𝑥 ) ) |
| 17 | 16 | ralbidva | ⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) ) |
| 18 | unissb | ⊢ ( ∪ 𝐴 ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) | |
| 19 | 17 18 | bitr4di | ⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∪ 𝐴 ⊆ 𝑥 ) ) |
| 20 | 19 | rexbidva | ⊢ ( 𝐴 ⊆ On → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∃ 𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥 ) ) |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∃ 𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥 ) ) |
| 22 | 7 21 | mpbid | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥 ) |
| 23 | elssuni | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴 ) | |
| 24 | eqss | ⊢ ( 𝑥 = ∪ 𝐴 ↔ ( 𝑥 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑥 ) ) | |
| 25 | eleq1 | ⊢ ( 𝑥 = ∪ 𝐴 → ( 𝑥 ∈ 𝐴 ↔ ∪ 𝐴 ∈ 𝐴 ) ) | |
| 26 | 25 | biimpcd | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 = ∪ 𝐴 → ∪ 𝐴 ∈ 𝐴 ) ) |
| 27 | 24 26 | biimtrrid | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑥 ) → ∪ 𝐴 ∈ 𝐴 ) ) |
| 28 | 23 27 | mpand | ⊢ ( 𝑥 ∈ 𝐴 → ( ∪ 𝐴 ⊆ 𝑥 → ∪ 𝐴 ∈ 𝐴 ) ) |
| 29 | 28 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥 → ∪ 𝐴 ∈ 𝐴 ) |
| 30 | 22 29 | syl | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∪ 𝐴 ∈ 𝐴 ) |