This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any neighborhood U of n X , there is a neighborhood u of X such that any sum of n elements in u sums to an element of U . (Contributed by Mario Carneiro, 19-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tmdgsum.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| tmdgsum.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| tmdgsum2.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| tmdgsum2.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tmdgsum2.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopMnd ) | ||
| tmdgsum2.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| tmdgsum2.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) | ||
| tmdgsum2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| tmdgsum2.3 | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ∈ 𝑈 ) | ||
| Assertion | tmdgsum2 | ⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmdgsum.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 2 | tmdgsum.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | tmdgsum2.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | tmdgsum2.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 5 | tmdgsum2.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopMnd ) | |
| 6 | tmdgsum2.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 7 | tmdgsum2.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) | |
| 8 | tmdgsum2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 9 | tmdgsum2.3 | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ∈ 𝑈 ) | |
| 10 | eqid | ⊢ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑓 ) ) = ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑓 ) ) | |
| 11 | 10 | mptpreima | ⊢ ( ◡ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑓 ) ) “ 𝑈 ) = { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } |
| 12 | 1 2 | tmdgsum | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin ) → ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑓 ) ) ∈ ( ( 𝐽 ↑ko 𝒫 𝐴 ) Cn 𝐽 ) ) |
| 13 | 4 5 6 12 | syl3anc | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑓 ) ) ∈ ( ( 𝐽 ↑ko 𝒫 𝐴 ) Cn 𝐽 ) ) |
| 14 | cnima | ⊢ ( ( ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑓 ) ) ∈ ( ( 𝐽 ↑ko 𝒫 𝐴 ) Cn 𝐽 ) ∧ 𝑈 ∈ 𝐽 ) → ( ◡ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑓 ) ) “ 𝑈 ) ∈ ( 𝐽 ↑ko 𝒫 𝐴 ) ) | |
| 15 | 13 7 14 | syl2anc | ⊢ ( 𝜑 → ( ◡ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑓 ) ) “ 𝑈 ) ∈ ( 𝐽 ↑ko 𝒫 𝐴 ) ) |
| 16 | 11 15 | eqeltrrid | ⊢ ( 𝜑 → { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ∈ ( 𝐽 ↑ko 𝒫 𝐴 ) ) |
| 17 | 1 2 | tmdtopon | ⊢ ( 𝐺 ∈ TopMnd → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 18 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐽 ∈ Top ) | |
| 19 | 5 17 18 | 3syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 20 | xkopt | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ) → ( 𝐽 ↑ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) ) | |
| 21 | 19 6 20 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ↑ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) ) |
| 22 | fnconstg | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → ( 𝐴 × { 𝐽 } ) Fn 𝐴 ) | |
| 23 | 5 17 22 | 3syl | ⊢ ( 𝜑 → ( 𝐴 × { 𝐽 } ) Fn 𝐴 ) |
| 24 | eqid | ⊢ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } | |
| 25 | 24 | ptval | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 × { 𝐽 } ) Fn 𝐴 ) → ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 26 | 6 23 25 | syl2anc | ⊢ ( 𝜑 → ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 27 | 21 26 | eqtrd | ⊢ ( 𝜑 → ( 𝐽 ↑ko 𝒫 𝐴 ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 28 | 16 27 | eleqtrd | ⊢ ( 𝜑 → { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ∈ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 29 | oveq2 | ⊢ ( 𝑓 = ( 𝐴 × { 𝑋 } ) → ( 𝐺 Σg 𝑓 ) = ( 𝐺 Σg ( 𝐴 × { 𝑋 } ) ) ) | |
| 30 | 29 | eleq1d | ⊢ ( 𝑓 = ( 𝐴 × { 𝑋 } ) → ( ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ↔ ( 𝐺 Σg ( 𝐴 × { 𝑋 } ) ) ∈ 𝑈 ) ) |
| 31 | fconst6g | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝐴 × { 𝑋 } ) : 𝐴 ⟶ 𝐵 ) | |
| 32 | 8 31 | syl | ⊢ ( 𝜑 → ( 𝐴 × { 𝑋 } ) : 𝐴 ⟶ 𝐵 ) |
| 33 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 34 | elmapg | ⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ∈ Fin ) → ( ( 𝐴 × { 𝑋 } ) ∈ ( 𝐵 ↑m 𝐴 ) ↔ ( 𝐴 × { 𝑋 } ) : 𝐴 ⟶ 𝐵 ) ) | |
| 35 | 33 6 34 | sylancr | ⊢ ( 𝜑 → ( ( 𝐴 × { 𝑋 } ) ∈ ( 𝐵 ↑m 𝐴 ) ↔ ( 𝐴 × { 𝑋 } ) : 𝐴 ⟶ 𝐵 ) ) |
| 36 | 32 35 | mpbird | ⊢ ( 𝜑 → ( 𝐴 × { 𝑋 } ) ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 37 | fconstmpt | ⊢ ( 𝐴 × { 𝑋 } ) = ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) | |
| 38 | 37 | oveq2i | ⊢ ( 𝐺 Σg ( 𝐴 × { 𝑋 } ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) |
| 39 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 40 | 4 39 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 41 | 2 3 | gsumconst | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) |
| 42 | 40 6 8 41 | syl3anc | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) |
| 43 | 38 42 | eqtrid | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐴 × { 𝑋 } ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) |
| 44 | 43 9 | eqeltrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐴 × { 𝑋 } ) ) ∈ 𝑈 ) |
| 45 | 30 36 44 | elrabd | ⊢ ( 𝜑 → ( 𝐴 × { 𝑋 } ) ∈ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) |
| 46 | tg2 | ⊢ ( ( { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ∈ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ∧ ( 𝐴 × { 𝑋 } ) ∈ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) → ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( ( 𝐴 × { 𝑋 } ) ∈ 𝑡 ∧ 𝑡 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) | |
| 47 | 28 45 46 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( ( 𝐴 × { 𝑋 } ) ∈ 𝑡 ∧ 𝑡 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) |
| 48 | eleq2 | ⊢ ( 𝑡 = 𝑥 → ( ( 𝐴 × { 𝑋 } ) ∈ 𝑡 ↔ ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ) ) | |
| 49 | sseq1 | ⊢ ( 𝑡 = 𝑥 → ( 𝑡 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ↔ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) | |
| 50 | 48 49 | anbi12d | ⊢ ( 𝑡 = 𝑥 → ( ( ( 𝐴 × { 𝑋 } ) ∈ 𝑡 ∧ 𝑡 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ↔ ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) ) |
| 51 | 50 | rexab2 | ⊢ ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( ( 𝐴 × { 𝑋 } ) ∈ 𝑡 ∧ 𝑡 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ↔ ∃ 𝑥 ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) ) |
| 52 | 47 51 | sylib | ⊢ ( 𝜑 → ∃ 𝑥 ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) ) |
| 53 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = ∪ 𝐽 ) | |
| 54 | 5 17 53 | 3syl | ⊢ ( 𝜑 → 𝐵 = ∪ 𝐽 ) |
| 55 | 54 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → 𝐵 = ∪ 𝐽 ) |
| 56 | 55 | ineq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ( 𝐵 ∩ ∩ ran 𝑔 ) = ( ∪ 𝐽 ∩ ∩ ran 𝑔 ) ) |
| 57 | 19 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → 𝐽 ∈ Top ) |
| 58 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → 𝑔 Fn 𝐴 ) | |
| 59 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) | |
| 60 | fvconst2g | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) = 𝐽 ) | |
| 61 | 60 | eleq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ↔ ( 𝑔 ‘ 𝑦 ) ∈ 𝐽 ) ) |
| 62 | 61 | ralbidva | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ 𝐽 ) ) |
| 63 | 57 62 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ 𝐽 ) ) |
| 64 | 59 63 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ 𝐽 ) |
| 65 | ffnfv | ⊢ ( 𝑔 : 𝐴 ⟶ 𝐽 ↔ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ 𝐽 ) ) | |
| 66 | 58 64 65 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → 𝑔 : 𝐴 ⟶ 𝐽 ) |
| 67 | 66 | frnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ran 𝑔 ⊆ 𝐽 ) |
| 68 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → 𝐴 ∈ Fin ) |
| 69 | dffn4 | ⊢ ( 𝑔 Fn 𝐴 ↔ 𝑔 : 𝐴 –onto→ ran 𝑔 ) | |
| 70 | 58 69 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → 𝑔 : 𝐴 –onto→ ran 𝑔 ) |
| 71 | fofi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑔 : 𝐴 –onto→ ran 𝑔 ) → ran 𝑔 ∈ Fin ) | |
| 72 | 68 70 71 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ran 𝑔 ∈ Fin ) |
| 73 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 74 | 73 | rintopn | ⊢ ( ( 𝐽 ∈ Top ∧ ran 𝑔 ⊆ 𝐽 ∧ ran 𝑔 ∈ Fin ) → ( ∪ 𝐽 ∩ ∩ ran 𝑔 ) ∈ 𝐽 ) |
| 75 | 57 67 72 74 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ( ∪ 𝐽 ∩ ∩ ran 𝑔 ) ∈ 𝐽 ) |
| 76 | 56 75 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ( 𝐵 ∩ ∩ ran 𝑔 ) ∈ 𝐽 ) |
| 77 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → 𝑋 ∈ 𝐵 ) |
| 78 | fconstmpt | ⊢ ( 𝐴 × { 𝑋 } ) = ( 𝑦 ∈ 𝐴 ↦ 𝑋 ) | |
| 79 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) | |
| 80 | 78 79 | eqeltrrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ( 𝑦 ∈ 𝐴 ↦ 𝑋 ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) |
| 81 | mptelixpg | ⊢ ( 𝐴 ∈ Fin → ( ( 𝑦 ∈ 𝐴 ↦ 𝑋 ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 𝑋 ∈ ( 𝑔 ‘ 𝑦 ) ) ) | |
| 82 | 68 81 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ( ( 𝑦 ∈ 𝐴 ↦ 𝑋 ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 𝑋 ∈ ( 𝑔 ‘ 𝑦 ) ) ) |
| 83 | 80 82 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ∀ 𝑦 ∈ 𝐴 𝑋 ∈ ( 𝑔 ‘ 𝑦 ) ) |
| 84 | eleq2 | ⊢ ( 𝑧 = ( 𝑔 ‘ 𝑦 ) → ( 𝑋 ∈ 𝑧 ↔ 𝑋 ∈ ( 𝑔 ‘ 𝑦 ) ) ) | |
| 85 | 84 | ralrn | ⊢ ( 𝑔 Fn 𝐴 → ( ∀ 𝑧 ∈ ran 𝑔 𝑋 ∈ 𝑧 ↔ ∀ 𝑦 ∈ 𝐴 𝑋 ∈ ( 𝑔 ‘ 𝑦 ) ) ) |
| 86 | 58 85 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ( ∀ 𝑧 ∈ ran 𝑔 𝑋 ∈ 𝑧 ↔ ∀ 𝑦 ∈ 𝐴 𝑋 ∈ ( 𝑔 ‘ 𝑦 ) ) ) |
| 87 | 83 86 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ∀ 𝑧 ∈ ran 𝑔 𝑋 ∈ 𝑧 ) |
| 88 | elrint | ⊢ ( 𝑋 ∈ ( 𝐵 ∩ ∩ ran 𝑔 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ ran 𝑔 𝑋 ∈ 𝑧 ) ) | |
| 89 | 77 87 88 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → 𝑋 ∈ ( 𝐵 ∩ ∩ ran 𝑔 ) ) |
| 90 | 33 | inex1 | ⊢ ( 𝐵 ∩ ∩ ran 𝑔 ) ∈ V |
| 91 | ixpconstg | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∩ ∩ ran 𝑔 ) ∈ V ) → X 𝑦 ∈ 𝐴 ( 𝐵 ∩ ∩ ran 𝑔 ) = ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ) | |
| 92 | 68 90 91 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → X 𝑦 ∈ 𝐴 ( 𝐵 ∩ ∩ ran 𝑔 ) = ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ) |
| 93 | inss2 | ⊢ ( 𝐵 ∩ ∩ ran 𝑔 ) ⊆ ∩ ran 𝑔 | |
| 94 | fnfvelrn | ⊢ ( ( 𝑔 Fn 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑦 ) ∈ ran 𝑔 ) | |
| 95 | intss1 | ⊢ ( ( 𝑔 ‘ 𝑦 ) ∈ ran 𝑔 → ∩ ran 𝑔 ⊆ ( 𝑔 ‘ 𝑦 ) ) | |
| 96 | 94 95 | syl | ⊢ ( ( 𝑔 Fn 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ∩ ran 𝑔 ⊆ ( 𝑔 ‘ 𝑦 ) ) |
| 97 | 93 96 | sstrid | ⊢ ( ( 𝑔 Fn 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐵 ∩ ∩ ran 𝑔 ) ⊆ ( 𝑔 ‘ 𝑦 ) ) |
| 98 | 97 | ralrimiva | ⊢ ( 𝑔 Fn 𝐴 → ∀ 𝑦 ∈ 𝐴 ( 𝐵 ∩ ∩ ran 𝑔 ) ⊆ ( 𝑔 ‘ 𝑦 ) ) |
| 99 | ss2ixp | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝐵 ∩ ∩ ran 𝑔 ) ⊆ ( 𝑔 ‘ 𝑦 ) → X 𝑦 ∈ 𝐴 ( 𝐵 ∩ ∩ ran 𝑔 ) ⊆ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) | |
| 100 | 58 98 99 | 3syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → X 𝑦 ∈ 𝐴 ( 𝐵 ∩ ∩ ran 𝑔 ) ⊆ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) |
| 101 | 92 100 | eqsstrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ⊆ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) |
| 102 | ssrab | ⊢ ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ↔ ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ ( 𝐵 ↑m 𝐴 ) ∧ ∀ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) | |
| 103 | 102 | simprbi | ⊢ ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } → ∀ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) |
| 104 | 103 | ad2antll | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ∀ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) |
| 105 | ssralv | ⊢ ( ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ⊆ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ∀ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 → ∀ 𝑓 ∈ ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) | |
| 106 | 101 104 105 | sylc | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ∀ 𝑓 ∈ ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) |
| 107 | eleq2 | ⊢ ( 𝑢 = ( 𝐵 ∩ ∩ ran 𝑔 ) → ( 𝑋 ∈ 𝑢 ↔ 𝑋 ∈ ( 𝐵 ∩ ∩ ran 𝑔 ) ) ) | |
| 108 | oveq1 | ⊢ ( 𝑢 = ( 𝐵 ∩ ∩ ran 𝑔 ) → ( 𝑢 ↑m 𝐴 ) = ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ) | |
| 109 | 108 | raleqdv | ⊢ ( 𝑢 = ( 𝐵 ∩ ∩ ran 𝑔 ) → ( ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ↔ ∀ 𝑓 ∈ ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) |
| 110 | 107 109 | anbi12d | ⊢ ( 𝑢 = ( 𝐵 ∩ ∩ ran 𝑔 ) → ( ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ↔ ( 𝑋 ∈ ( 𝐵 ∩ ∩ ran 𝑔 ) ∧ ∀ 𝑓 ∈ ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ) |
| 111 | 110 | rspcev | ⊢ ( ( ( 𝐵 ∩ ∩ ran 𝑔 ) ∈ 𝐽 ∧ ( 𝑋 ∈ ( 𝐵 ∩ ∩ ran 𝑔 ) ∧ ∀ 𝑓 ∈ ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) |
| 112 | 76 89 106 111 | syl12anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) |
| 113 | 112 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) → ( ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ) |
| 114 | 113 | 3adantr3 | ⊢ ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) → ( ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ) |
| 115 | eleq2 | ⊢ ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ↔ ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) | |
| 116 | sseq1 | ⊢ ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ↔ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) | |
| 117 | 115 116 | anbi12d | ⊢ ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ↔ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) ) |
| 118 | 117 | imbi1d | ⊢ ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ( ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ↔ ( ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ) ) |
| 119 | 114 118 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) → ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ) ) |
| 120 | 119 | expimpd | ⊢ ( 𝜑 → ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → ( ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ) ) |
| 121 | 120 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → ( ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ) ) |
| 122 | 121 | impd | ⊢ ( 𝜑 → ( ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ) |
| 123 | 122 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑥 ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ) |
| 124 | 52 123 | mpd | ⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) |