This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a topological monoid, the group sum operation is a continuous function from the function space to the base topology. This theorem is not true when A is infinite, because in this case for any basic open set of the domain one of the factors will be the whole space, so by varying the value of the functions to sum at this index, one can achieve any desired sum. (Contributed by Mario Carneiro, 19-Sep-2015) (Proof shortened by AV, 24-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tmdgsum.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| tmdgsum.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | tmdgsum | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( 𝐽 ↑ko 𝒫 𝐴 ) Cn 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmdgsum.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 2 | tmdgsum.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | oveq2 | ⊢ ( 𝑤 = ∅ → ( 𝐵 ↑m 𝑤 ) = ( 𝐵 ↑m ∅ ) ) | |
| 4 | 3 | mpteq1d | ⊢ ( 𝑤 = ∅ → ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) ↦ ( 𝐺 Σg 𝑥 ) ) ) |
| 5 | xpeq1 | ⊢ ( 𝑤 = ∅ → ( 𝑤 × { 𝐽 } ) = ( ∅ × { 𝐽 } ) ) | |
| 6 | 0xp | ⊢ ( ∅ × { 𝐽 } ) = ∅ | |
| 7 | 5 6 | eqtrdi | ⊢ ( 𝑤 = ∅ → ( 𝑤 × { 𝐽 } ) = ∅ ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑤 = ∅ → ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) = ( ∏t ‘ ∅ ) ) |
| 9 | 8 | oveq1d | ⊢ ( 𝑤 = ∅ → ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) = ( ( ∏t ‘ ∅ ) Cn 𝐽 ) ) |
| 10 | 4 9 | eleq12d | ⊢ ( 𝑤 = ∅ → ( ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) ↔ ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ∅ ) Cn 𝐽 ) ) ) |
| 11 | 10 | imbi2d | ⊢ ( 𝑤 = ∅ → ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) ) ↔ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ∅ ) Cn 𝐽 ) ) ) ) |
| 12 | oveq2 | ⊢ ( 𝑤 = 𝑦 → ( 𝐵 ↑m 𝑤 ) = ( 𝐵 ↑m 𝑦 ) ) | |
| 13 | 12 | mpteq1d | ⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) = ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ) |
| 14 | xpeq1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 × { 𝐽 } ) = ( 𝑦 × { 𝐽 } ) ) | |
| 15 | 14 | fveq2d | ⊢ ( 𝑤 = 𝑦 → ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) = ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) ) |
| 16 | 15 | oveq1d | ⊢ ( 𝑤 = 𝑦 → ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) = ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 17 | 13 16 | eleq12d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) ↔ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ) |
| 18 | 17 | imbi2d | ⊢ ( 𝑤 = 𝑦 → ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) ) ↔ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ) ) |
| 19 | oveq2 | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐵 ↑m 𝑤 ) = ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 20 | 19 | mpteq1d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑥 ) ) ) |
| 21 | xpeq1 | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑤 × { 𝐽 } ) = ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) | |
| 22 | 21 | fveq2d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) = ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ) |
| 23 | 22 | oveq1d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) = ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 24 | 20 23 | eleq12d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) ↔ ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) ) |
| 25 | 24 | imbi2d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) ) ↔ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) ) ) |
| 26 | oveq2 | ⊢ ( 𝑤 = 𝐴 → ( 𝐵 ↑m 𝑤 ) = ( 𝐵 ↑m 𝐴 ) ) | |
| 27 | 26 | mpteq1d | ⊢ ( 𝑤 = 𝐴 → ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) = ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑥 ) ) ) |
| 28 | xpeq1 | ⊢ ( 𝑤 = 𝐴 → ( 𝑤 × { 𝐽 } ) = ( 𝐴 × { 𝐽 } ) ) | |
| 29 | 28 | fveq2d | ⊢ ( 𝑤 = 𝐴 → ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) = ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) ) |
| 30 | 29 | oveq1d | ⊢ ( 𝑤 = 𝐴 → ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) = ( ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 31 | 27 30 | eleq12d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) ↔ ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) Cn 𝐽 ) ) ) |
| 32 | 31 | imbi2d | ⊢ ( 𝑤 = 𝐴 → ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) ) ↔ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) Cn 𝐽 ) ) ) ) |
| 33 | elmapfn | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) → 𝑥 Fn ∅ ) | |
| 34 | fn0 | ⊢ ( 𝑥 Fn ∅ ↔ 𝑥 = ∅ ) | |
| 35 | 33 34 | sylib | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) → 𝑥 = ∅ ) |
| 36 | 35 | oveq2d | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) → ( 𝐺 Σg 𝑥 ) = ( 𝐺 Σg ∅ ) ) |
| 37 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 38 | 37 | gsum0 | ⊢ ( 𝐺 Σg ∅ ) = ( 0g ‘ 𝐺 ) |
| 39 | 36 38 | eqtrdi | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) → ( 𝐺 Σg 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 40 | 39 | mpteq2ia | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) ↦ ( 𝐺 Σg 𝑥 ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) ↦ ( 0g ‘ 𝐺 ) ) |
| 41 | 0ex | ⊢ ∅ ∈ V | |
| 42 | 1 2 | tmdtopon | ⊢ ( 𝐺 ∈ TopMnd → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 43 | 42 | adantl | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 44 | 6 | fveq2i | ⊢ ( ∏t ‘ ( ∅ × { 𝐽 } ) ) = ( ∏t ‘ ∅ ) |
| 45 | 44 | eqcomi | ⊢ ( ∏t ‘ ∅ ) = ( ∏t ‘ ( ∅ × { 𝐽 } ) ) |
| 46 | 45 | pttoponconst | ⊢ ( ( ∅ ∈ V ∧ 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) → ( ∏t ‘ ∅ ) ∈ ( TopOn ‘ ( 𝐵 ↑m ∅ ) ) ) |
| 47 | 41 43 46 | sylancr | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( ∏t ‘ ∅ ) ∈ ( TopOn ‘ ( 𝐵 ↑m ∅ ) ) ) |
| 48 | tmdmnd | ⊢ ( 𝐺 ∈ TopMnd → 𝐺 ∈ Mnd ) | |
| 49 | 48 | adantl | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → 𝐺 ∈ Mnd ) |
| 50 | 2 37 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 51 | 49 50 | syl | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 52 | 47 43 51 | cnmptc | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) ↦ ( 0g ‘ 𝐺 ) ) ∈ ( ( ∏t ‘ ∅ ) Cn 𝐽 ) ) |
| 53 | 40 52 | eqeltrid | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ∅ ) Cn 𝐽 ) ) |
| 54 | oveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝐺 Σg 𝑥 ) = ( 𝐺 Σg 𝑤 ) ) | |
| 55 | 54 | cbvmptv | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑥 ) ) = ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑤 ) ) |
| 56 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 57 | simpl1l | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝐺 ∈ CMnd ) | |
| 58 | simp2l | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → 𝑦 ∈ Fin ) | |
| 59 | snfi | ⊢ { 𝑧 } ∈ Fin | |
| 60 | unfi | ⊢ ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) | |
| 61 | 58 59 60 | sylancl | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 62 | 61 | adantr | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 63 | elmapi | ⊢ ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) → 𝑤 : ( 𝑦 ∪ { 𝑧 } ) ⟶ 𝐵 ) | |
| 64 | 63 | adantl | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝑤 : ( 𝑦 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
| 65 | fvexd | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 0g ‘ 𝐺 ) ∈ V ) | |
| 66 | 64 62 65 | fdmfifsupp | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝑤 finSupp ( 0g ‘ 𝐺 ) ) |
| 67 | simpl2r | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 68 | disjsn | ⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) | |
| 69 | 67 68 | sylibr | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 70 | eqidd | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) ) | |
| 71 | 2 37 56 57 62 64 66 69 70 | gsumsplit | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝐺 Σg 𝑤 ) = ( ( 𝐺 Σg ( 𝑤 ↾ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑤 ↾ { 𝑧 } ) ) ) ) |
| 72 | 71 | mpteq2dva | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑤 ) ) = ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( ( 𝐺 Σg ( 𝑤 ↾ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑤 ↾ { 𝑧 } ) ) ) ) ) |
| 73 | 55 72 | eqtrid | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑥 ) ) = ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( ( 𝐺 Σg ( 𝑤 ↾ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑤 ↾ { 𝑧 } ) ) ) ) ) |
| 74 | simp1r | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → 𝐺 ∈ TopMnd ) | |
| 75 | 74 42 | syl | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 76 | eqid | ⊢ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) = ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) | |
| 77 | 76 | pttoponconst | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) → ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ∈ ( TopOn ‘ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 78 | 61 75 77 | syl2anc | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ∈ ( TopOn ‘ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 79 | toponuni | ⊢ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ∈ ( TopOn ‘ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) = ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ) | |
| 80 | 78 79 | syl | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) = ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ) |
| 81 | 80 | mpteq1d | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝑤 ↾ 𝑦 ) ) = ( 𝑤 ∈ ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ↦ ( 𝑤 ↾ 𝑦 ) ) ) |
| 82 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐽 ∈ Top ) | |
| 83 | 74 42 82 | 3syl | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → 𝐽 ∈ Top ) |
| 84 | fconst6g | ⊢ ( 𝐽 ∈ Top → ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) : ( 𝑦 ∪ { 𝑧 } ) ⟶ Top ) | |
| 85 | 83 84 | syl | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) : ( 𝑦 ∪ { 𝑧 } ) ⟶ Top ) |
| 86 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 87 | 86 | a1i | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
| 88 | eqid | ⊢ ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) = ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) | |
| 89 | xpssres | ⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ↾ 𝑦 ) = ( 𝑦 × { 𝐽 } ) ) | |
| 90 | 86 89 | ax-mp | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ↾ 𝑦 ) = ( 𝑦 × { 𝐽 } ) |
| 91 | 90 | eqcomi | ⊢ ( 𝑦 × { 𝐽 } ) = ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ↾ 𝑦 ) |
| 92 | 91 | fveq2i | ⊢ ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) = ( ∏t ‘ ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ↾ 𝑦 ) ) |
| 93 | 88 76 92 | ptrescn | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) : ( 𝑦 ∪ { 𝑧 } ) ⟶ Top ∧ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → ( 𝑤 ∈ ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ↦ ( 𝑤 ↾ 𝑦 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) ) ) |
| 94 | 61 85 87 93 | syl3anc | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ↦ ( 𝑤 ↾ 𝑦 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) ) ) |
| 95 | 81 94 | eqeltrd | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝑤 ↾ 𝑦 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) ) ) |
| 96 | eqid | ⊢ ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) = ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) | |
| 97 | 96 | pttoponconst | ⊢ ( ( 𝑦 ∈ Fin ∧ 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) → ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) ∈ ( TopOn ‘ ( 𝐵 ↑m 𝑦 ) ) ) |
| 98 | 58 75 97 | syl2anc | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) ∈ ( TopOn ‘ ( 𝐵 ↑m 𝑦 ) ) ) |
| 99 | simp3 | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) | |
| 100 | oveq2 | ⊢ ( 𝑥 = ( 𝑤 ↾ 𝑦 ) → ( 𝐺 Σg 𝑥 ) = ( 𝐺 Σg ( 𝑤 ↾ 𝑦 ) ) ) | |
| 101 | 78 95 98 99 100 | cnmpt11 | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg ( 𝑤 ↾ 𝑦 ) ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 102 | 64 | feqmptd | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝑤 = ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 103 | 102 | reseq1d | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝑤 ↾ { 𝑧 } ) = ( ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝑤 ‘ 𝑘 ) ) ↾ { 𝑧 } ) ) |
| 104 | ssun2 | ⊢ { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 105 | resmpt | ⊢ ( { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝑤 ‘ 𝑘 ) ) ↾ { 𝑧 } ) = ( 𝑘 ∈ { 𝑧 } ↦ ( 𝑤 ‘ 𝑘 ) ) ) | |
| 106 | 104 105 | ax-mp | ⊢ ( ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝑤 ‘ 𝑘 ) ) ↾ { 𝑧 } ) = ( 𝑘 ∈ { 𝑧 } ↦ ( 𝑤 ‘ 𝑘 ) ) |
| 107 | 103 106 | eqtrdi | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝑤 ↾ { 𝑧 } ) = ( 𝑘 ∈ { 𝑧 } ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 108 | 107 | oveq2d | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝐺 Σg ( 𝑤 ↾ { 𝑧 } ) ) = ( 𝐺 Σg ( 𝑘 ∈ { 𝑧 } ↦ ( 𝑤 ‘ 𝑘 ) ) ) ) |
| 109 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 110 | 57 109 | syl | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝐺 ∈ Mnd ) |
| 111 | vex | ⊢ 𝑧 ∈ V | |
| 112 | 111 | a1i | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝑧 ∈ V ) |
| 113 | vsnid | ⊢ 𝑧 ∈ { 𝑧 } | |
| 114 | elun2 | ⊢ ( 𝑧 ∈ { 𝑧 } → 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) | |
| 115 | 113 114 | mp1i | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
| 116 | 64 115 | ffvelcdmd | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝑤 ‘ 𝑧 ) ∈ 𝐵 ) |
| 117 | fveq2 | ⊢ ( 𝑘 = 𝑧 → ( 𝑤 ‘ 𝑘 ) = ( 𝑤 ‘ 𝑧 ) ) | |
| 118 | 2 117 | gsumsn | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑧 ∈ V ∧ ( 𝑤 ‘ 𝑧 ) ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑧 } ↦ ( 𝑤 ‘ 𝑘 ) ) ) = ( 𝑤 ‘ 𝑧 ) ) |
| 119 | 110 112 116 118 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑧 } ↦ ( 𝑤 ‘ 𝑘 ) ) ) = ( 𝑤 ‘ 𝑧 ) ) |
| 120 | 108 119 | eqtrd | ⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝐺 Σg ( 𝑤 ↾ { 𝑧 } ) ) = ( 𝑤 ‘ 𝑧 ) ) |
| 121 | 120 | mpteq2dva | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg ( 𝑤 ↾ { 𝑧 } ) ) ) = ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝑤 ‘ 𝑧 ) ) ) |
| 122 | 80 | mpteq1d | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝑤 ‘ 𝑧 ) ) = ( 𝑤 ∈ ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ↦ ( 𝑤 ‘ 𝑧 ) ) ) |
| 123 | 113 114 | mp1i | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
| 124 | 88 76 | ptpjcn | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) : ( 𝑦 ∪ { 𝑧 } ) ⟶ Top ∧ 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( 𝑤 ∈ ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ↦ ( 𝑤 ‘ 𝑧 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ‘ 𝑧 ) ) ) |
| 125 | 61 85 123 124 | syl3anc | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ↦ ( 𝑤 ‘ 𝑧 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ‘ 𝑧 ) ) ) |
| 126 | 122 125 | eqeltrd | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝑤 ‘ 𝑧 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ‘ 𝑧 ) ) ) |
| 127 | fvconst2g | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ‘ 𝑧 ) = 𝐽 ) | |
| 128 | 83 123 127 | syl2anc | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ‘ 𝑧 ) = 𝐽 ) |
| 129 | 128 | oveq2d | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ‘ 𝑧 ) ) = ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 130 | 126 129 | eleqtrd | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝑤 ‘ 𝑧 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 131 | 121 130 | eqeltrd | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg ( 𝑤 ↾ { 𝑧 } ) ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 132 | 1 56 74 78 101 131 | cnmpt1plusg | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( ( 𝐺 Σg ( 𝑤 ↾ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑤 ↾ { 𝑧 } ) ) ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 133 | 73 132 | eqeltrd | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 134 | 133 | 3expia | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) ) |
| 135 | 134 | expcom | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) ) ) |
| 136 | 135 | a2d | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) ) ) |
| 137 | 11 18 25 32 53 136 | findcard2s | ⊢ ( 𝐴 ∈ Fin → ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) Cn 𝐽 ) ) ) |
| 138 | 137 | com12 | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝐴 ∈ Fin → ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) Cn 𝐽 ) ) ) |
| 139 | 138 | 3impia | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 140 | 42 82 | syl | ⊢ ( 𝐺 ∈ TopMnd → 𝐽 ∈ Top ) |
| 141 | xkopt | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ) → ( 𝐽 ↑ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) ) | |
| 142 | 140 141 | sylan | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin ) → ( 𝐽 ↑ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) ) |
| 143 | 142 | 3adant1 | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin ) → ( 𝐽 ↑ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) ) |
| 144 | 143 | oveq1d | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin ) → ( ( 𝐽 ↑ko 𝒫 𝐴 ) Cn 𝐽 ) = ( ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 145 | 139 144 | eleqtrrd | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( 𝐽 ↑ko 𝒫 𝐴 ) Cn 𝐽 ) ) |