This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumconst.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumconst.m | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | gsumconst | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumconst.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumconst.m | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ 𝐴 = ∅ ) → 𝑋 ∈ 𝐵 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 5 | 1 4 2 | mulg0 | ⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 6 | 3 5 | syl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ 𝐴 = ∅ ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 7 | fveq2 | ⊢ ( 𝐴 = ∅ → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ∅ ) ) | |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ 𝐴 = ∅ ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ∅ ) ) |
| 9 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 10 | 8 9 | eqtrdi | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ 𝐴 = ∅ ) → ( ♯ ‘ 𝐴 ) = 0 ) |
| 11 | 10 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ 𝐴 = ∅ ) → ( ( ♯ ‘ 𝐴 ) · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 12 | mpteq1 | ⊢ ( 𝐴 = ∅ → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) = ( 𝑘 ∈ ∅ ↦ 𝑋 ) ) | |
| 13 | 12 | adantl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ 𝐴 = ∅ ) → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) = ( 𝑘 ∈ ∅ ↦ 𝑋 ) ) |
| 14 | mpt0 | ⊢ ( 𝑘 ∈ ∅ ↦ 𝑋 ) = ∅ | |
| 15 | 13 14 | eqtrdi | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ 𝐴 = ∅ ) → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) = ∅ ) |
| 16 | 15 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ 𝐴 = ∅ ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( 𝐺 Σg ∅ ) ) |
| 17 | 4 | gsum0 | ⊢ ( 𝐺 Σg ∅ ) = ( 0g ‘ 𝐺 ) |
| 18 | 16 17 | eqtrdi | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ 𝐴 = ∅ ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 19 | 6 11 18 | 3eqtr4rd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ 𝐴 = ∅ ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) |
| 20 | 19 | ex | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) → ( 𝐴 = ∅ → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) ) |
| 21 | simprl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) | |
| 22 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 23 | 21 22 | eleqtrdi | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 24 | simpr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | |
| 25 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑋 ∈ 𝐵 ) | |
| 26 | 25 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 27 | eqid | ⊢ ( 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↦ 𝑋 ) = ( 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↦ 𝑋 ) | |
| 28 | 27 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↦ 𝑋 ) ‘ 𝑥 ) = 𝑋 ) |
| 29 | 24 26 28 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↦ 𝑋 ) ‘ 𝑥 ) = 𝑋 ) |
| 30 | f1of | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) | |
| 31 | 30 | ad2antll | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 32 | 31 | ffvelcdmda | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 ) |
| 33 | 31 | feqmptd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 = ( 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
| 34 | eqidd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) = ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) | |
| 35 | eqidd | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑥 ) → 𝑋 = 𝑋 ) | |
| 36 | 32 33 34 35 | fmptco | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ∘ 𝑓 ) = ( 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↦ 𝑋 ) ) |
| 37 | 36 | fveq1d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ∘ 𝑓 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↦ 𝑋 ) ‘ 𝑥 ) ) |
| 38 | 37 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ∘ 𝑓 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↦ 𝑋 ) ‘ 𝑥 ) ) |
| 39 | elfznn | ⊢ ( 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → 𝑥 ∈ ℕ ) | |
| 40 | fvconst2g | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑥 ∈ ℕ ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) | |
| 41 | 25 39 40 | syl2an | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) |
| 42 | 29 38 41 | 3eqtr4d | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ∘ 𝑓 ) ‘ 𝑥 ) = ( ( ℕ × { 𝑋 } ) ‘ 𝑥 ) ) |
| 43 | 23 42 | seqfveq | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 44 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 45 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 46 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝐺 ∈ Mnd ) | |
| 47 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝐴 ∈ Fin ) | |
| 48 | 25 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
| 49 | 48 | fmpttd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) : 𝐴 ⟶ 𝐵 ) |
| 50 | eqidd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑋 ( +g ‘ 𝐺 ) 𝑋 ) = ( 𝑋 ( +g ‘ 𝐺 ) 𝑋 ) ) | |
| 51 | 1 44 45 | elcntzsn | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 ∈ ( ( Cntz ‘ 𝐺 ) ‘ { 𝑋 } ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑋 ( +g ‘ 𝐺 ) 𝑋 ) = ( 𝑋 ( +g ‘ 𝐺 ) 𝑋 ) ) ) ) |
| 52 | 25 51 | syl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑋 ∈ ( ( Cntz ‘ 𝐺 ) ‘ { 𝑋 } ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑋 ( +g ‘ 𝐺 ) 𝑋 ) = ( 𝑋 ( +g ‘ 𝐺 ) 𝑋 ) ) ) ) |
| 53 | 25 50 52 | mpbir2and | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑋 ∈ ( ( Cntz ‘ 𝐺 ) ‘ { 𝑋 } ) ) |
| 54 | 53 | snssd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → { 𝑋 } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { 𝑋 } ) ) |
| 55 | snidg | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ { 𝑋 } ) | |
| 56 | 25 55 | syl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑋 ∈ { 𝑋 } ) |
| 57 | 56 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ { 𝑋 } ) |
| 58 | 57 | fmpttd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) : 𝐴 ⟶ { 𝑋 } ) |
| 59 | 58 | frnd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ran ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ⊆ { 𝑋 } ) |
| 60 | 45 | cntzidss | ⊢ ( ( { 𝑋 } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { 𝑋 } ) ∧ ran ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ⊆ { 𝑋 } ) → ran ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) |
| 61 | 54 59 60 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ran ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) |
| 62 | f1of1 | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1→ 𝐴 ) | |
| 63 | 62 | ad2antll | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1→ 𝐴 ) |
| 64 | suppssdm | ⊢ ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ dom ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) | |
| 65 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) = ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) | |
| 66 | 65 | dmmptss | ⊢ dom ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ⊆ 𝐴 |
| 67 | 66 | a1i | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → dom ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ⊆ 𝐴 ) |
| 68 | 64 67 | sstrid | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ 𝐴 ) |
| 69 | f1ofo | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –onto→ 𝐴 ) | |
| 70 | forn | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –onto→ 𝐴 → ran 𝑓 = 𝐴 ) | |
| 71 | 69 70 | syl | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ran 𝑓 = 𝐴 ) |
| 72 | 71 | ad2antll | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ran 𝑓 = 𝐴 ) |
| 73 | 68 72 | sseqtrrd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ ran 𝑓 ) |
| 74 | eqid | ⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ∘ 𝑓 ) supp ( 0g ‘ 𝐺 ) ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ∘ 𝑓 ) supp ( 0g ‘ 𝐺 ) ) | |
| 75 | 1 4 44 45 46 47 49 61 21 63 73 74 | gsumval3 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 76 | eqid | ⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) | |
| 77 | 1 44 2 76 | mulgnn | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( ♯ ‘ 𝐴 ) · 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 78 | 21 25 77 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ( ♯ ‘ 𝐴 ) · 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 79 | 43 75 78 | 3eqtr4d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) |
| 80 | 79 | expr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) ) |
| 81 | 80 | exlimdv | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) ) |
| 82 | 81 | expimpd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) → ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) ) |
| 83 | fz1f1o | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) | |
| 84 | 83 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
| 85 | 20 82 84 | mpjaod | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) |