This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015) Drop ax-8 . (Revised by GG, 1-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralab2.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) | |
| Assertion | rexab2 | ⊢ ( ∃ 𝑥 ∈ { 𝑦 ∣ 𝜑 } 𝜓 ↔ ∃ 𝑦 ( 𝜑 ∧ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralab2.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | df-rex | ⊢ ( ∃ 𝑥 ∈ { 𝑦 ∣ 𝜑 } 𝜓 ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } ∧ 𝜓 ) ) | |
| 3 | nfsab1 | ⊢ Ⅎ 𝑦 𝑥 ∈ { 𝑦 ∣ 𝜑 } | |
| 4 | nfv | ⊢ Ⅎ 𝑦 𝜓 | |
| 5 | 3 4 | nfan | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } ∧ 𝜓 ) |
| 6 | nfv | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝜒 ) | |
| 7 | eleq1ab | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑦 ∣ 𝜑 } ) ) | |
| 8 | abid | ⊢ ( 𝑦 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝜑 ) | |
| 9 | 7 8 | bitrdi | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝜑 ) ) |
| 10 | 9 1 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜒 ) ) ) |
| 11 | 5 6 10 | cbvexv1 | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } ∧ 𝜓 ) ↔ ∃ 𝑦 ( 𝜑 ∧ 𝜒 ) ) |
| 12 | 2 11 | bitri | ⊢ ( ∃ 𝑥 ∈ { 𝑦 ∣ 𝜑 } 𝜓 ↔ ∃ 𝑦 ( 𝜑 ∧ 𝜒 ) ) |