This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppgtmd.1 | ⊢ 𝑂 = ( oppg ‘ 𝐺 ) | |
| Assertion | oppgtmd | ⊢ ( 𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgtmd.1 | ⊢ 𝑂 = ( oppg ‘ 𝐺 ) | |
| 2 | tmdmnd | ⊢ ( 𝐺 ∈ TopMnd → 𝐺 ∈ Mnd ) | |
| 3 | 1 | oppgmnd | ⊢ ( 𝐺 ∈ Mnd → 𝑂 ∈ Mnd ) |
| 4 | 2 3 | syl | ⊢ ( 𝐺 ∈ TopMnd → 𝑂 ∈ Mnd ) |
| 5 | eqid | ⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 7 | 5 6 | tmdtopon | ⊢ ( 𝐺 ∈ TopMnd → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 8 | 1 6 | oppgbas | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑂 ) |
| 9 | 1 5 | oppgtopn | ⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝑂 ) |
| 10 | 8 9 | istps | ⊢ ( 𝑂 ∈ TopSp ↔ ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 11 | 7 10 | sylibr | ⊢ ( 𝐺 ∈ TopMnd → 𝑂 ∈ TopSp ) |
| 12 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 13 | id | ⊢ ( 𝐺 ∈ TopMnd → 𝐺 ∈ TopMnd ) | |
| 14 | 7 7 | cnmpt2nd | ⊢ ( 𝐺 ∈ TopMnd → ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ 𝑦 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 15 | 7 7 | cnmpt1st | ⊢ ( 𝐺 ∈ TopMnd → ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ 𝑥 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 16 | 5 12 13 7 7 14 15 | cnmpt2plusg | ⊢ ( 𝐺 ∈ TopMnd → ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 17 | eqid | ⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) | |
| 18 | eqid | ⊢ ( +𝑓 ‘ 𝑂 ) = ( +𝑓 ‘ 𝑂 ) | |
| 19 | 8 17 18 | plusffval | ⊢ ( +𝑓 ‘ 𝑂 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) |
| 20 | 12 1 17 | oppgplus | ⊢ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) |
| 21 | 6 6 20 | mpoeq123i | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 22 | 19 21 | eqtr2i | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( +𝑓 ‘ 𝑂 ) |
| 23 | 22 9 | istmd | ⊢ ( 𝑂 ∈ TopMnd ↔ ( 𝑂 ∈ Mnd ∧ 𝑂 ∈ TopSp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) ) |
| 24 | 4 11 16 23 | syl3anbrc | ⊢ ( 𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd ) |