This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum in a topological group is uniquely determined up to a coset of cls ( { 0 } ) , which is a normal subgroup by clsnsg , 0nsg . (Contributed by Mario Carneiro, 22-Sep-2015) (Proof shortened by AV, 24-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgptsmscls.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tgptsmscls.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| tgptsmscls.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tgptsmscls.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopGrp ) | ||
| tgptsmscls.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| tgptsmscls.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| tgptsmscls.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) | ||
| Assertion | tgptsmscls | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgptsmscls.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tgptsmscls.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 3 | tgptsmscls.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | tgptsmscls.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopGrp ) | |
| 5 | tgptsmscls.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | tgptsmscls.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 7 | tgptsmscls.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) | |
| 8 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ TopGrp ) |
| 9 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ Grp ) |
| 11 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 12 | 11 | 0subg | ⊢ ( 𝐺 ∈ Grp → { ( 0g ‘ 𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 13 | 10 12 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → { ( 0g ‘ 𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 14 | 2 | clssubg | ⊢ ( ( 𝐺 ∈ TopGrp ∧ { ( 0g ‘ 𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 15 | 8 13 14 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 16 | eqid | ⊢ ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) = ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) | |
| 17 | 1 16 | eqger | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) Er 𝐵 ) |
| 18 | 15 17 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) Er 𝐵 ) |
| 19 | tgptps | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp ) | |
| 20 | 4 19 | syl | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
| 21 | 1 3 20 5 6 | tsmscl | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ 𝐵 ) |
| 22 | 21 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥 ∈ 𝐵 ) |
| 23 | 21 7 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑋 ∈ 𝐵 ) |
| 25 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 26 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ CMnd ) |
| 27 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐴 ∈ 𝑉 ) |
| 28 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 29 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) |
| 30 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) | |
| 31 | 1 25 26 8 27 28 28 29 30 | tsmssub | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑋 ( -g ‘ 𝐺 ) 𝑥 ) ∈ ( 𝐺 tsums ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐹 ) ) ) |
| 32 | 28 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| 33 | 28 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 34 | 27 32 32 33 33 | offval2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐹 ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 35 | 10 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐺 ∈ Grp ) |
| 36 | 1 11 25 | grpsubid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑘 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑘 ) ) = ( 0g ‘ 𝐺 ) ) |
| 37 | 35 32 36 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑘 ) ) = ( 0g ‘ 𝐺 ) ) |
| 38 | 37 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) ) |
| 39 | 34 38 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐹 ) = ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) ) |
| 40 | 39 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐹 ) ) = ( 𝐺 tsums ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) ) ) |
| 41 | 8 19 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ TopSp ) |
| 42 | 1 11 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 43 | 10 42 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 44 | 43 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 45 | 44 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) : 𝐴 ⟶ 𝐵 ) |
| 46 | fconstmpt | ⊢ ( 𝐴 × { ( 0g ‘ 𝐺 ) } ) = ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) | |
| 47 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ V ) | |
| 48 | 5 47 | fczfsuppd | ⊢ ( 𝜑 → ( 𝐴 × { ( 0g ‘ 𝐺 ) } ) finSupp ( 0g ‘ 𝐺 ) ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐴 × { ( 0g ‘ 𝐺 ) } ) finSupp ( 0g ‘ 𝐺 ) ) |
| 50 | 46 49 | eqbrtrrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) finSupp ( 0g ‘ 𝐺 ) ) |
| 51 | 1 11 26 41 27 45 50 2 | tsmsgsum | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) ) = ( ( cls ‘ 𝐽 ) ‘ { ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) ) } ) ) |
| 52 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 53 | 26 52 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ Mnd ) |
| 54 | 11 | gsumz | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) ) = ( 0g ‘ 𝐺 ) ) |
| 55 | 53 27 54 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) ) = ( 0g ‘ 𝐺 ) ) |
| 56 | 55 | sneqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → { ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) ) } = { ( 0g ‘ 𝐺 ) } ) |
| 57 | 56 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( ( cls ‘ 𝐽 ) ‘ { ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) ) } ) = ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) |
| 58 | 40 51 57 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐹 ) ) = ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) |
| 59 | 31 58 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑋 ( -g ‘ 𝐺 ) 𝑥 ) ∈ ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) |
| 60 | isabl | ⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ) | |
| 61 | 10 26 60 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ Abel ) |
| 62 | 1 | subgss | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ∈ ( SubGrp ‘ 𝐺 ) → ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ⊆ 𝐵 ) |
| 63 | 15 62 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ⊆ 𝐵 ) |
| 64 | 1 25 16 | eqgabl | ⊢ ( ( 𝐺 ∈ Abel ∧ ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ⊆ 𝐵 ) → ( 𝑥 ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) 𝑋 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ( -g ‘ 𝐺 ) 𝑥 ) ∈ ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 65 | 61 63 64 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑥 ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) 𝑋 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ( -g ‘ 𝐺 ) 𝑥 ) ∈ ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 66 | 22 24 59 65 | mpbir3and | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥 ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) 𝑋 ) |
| 67 | 18 66 | ersym | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑋 ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) 𝑥 ) |
| 68 | 16 | releqg | ⊢ Rel ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) |
| 69 | relelec | ⊢ ( Rel ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) → ( 𝑥 ∈ [ 𝑋 ] ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) ↔ 𝑋 ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) 𝑥 ) ) | |
| 70 | 68 69 | ax-mp | ⊢ ( 𝑥 ∈ [ 𝑋 ] ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) ↔ 𝑋 ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) 𝑥 ) |
| 71 | 67 70 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥 ∈ [ 𝑋 ] ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) ) |
| 72 | eqid | ⊢ ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) = ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) | |
| 73 | 1 2 11 16 72 | snclseqg | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑋 ∈ 𝐵 ) → [ 𝑋 ] ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) = ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ) |
| 74 | 8 24 73 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → [ 𝑋 ] ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) = ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ) |
| 75 | 71 74 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ) |
| 76 | 75 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ) ) |
| 77 | 76 | ssrdv | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ) |
| 78 | 1 2 3 20 5 6 7 | tsmscls | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ⊆ ( 𝐺 tsums 𝐹 ) ) |
| 79 | 77 78 | eqssd | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ) |