This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two infinite group sums. (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmssub.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tsmssub.p | ⊢ − = ( -g ‘ 𝐺 ) | ||
| tsmssub.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tsmssub.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopGrp ) | ||
| tsmssub.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| tsmssub.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| tsmssub.h | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) | ||
| tsmssub.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) | ||
| tsmssub.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐺 tsums 𝐻 ) ) | ||
| Assertion | tsmssub | ⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ∈ ( 𝐺 tsums ( 𝐹 ∘f − 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmssub.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tsmssub.p | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | tsmssub.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | tsmssub.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopGrp ) | |
| 5 | tsmssub.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | tsmssub.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 7 | tsmssub.h | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) | |
| 8 | tsmssub.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) | |
| 9 | tsmssub.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐺 tsums 𝐻 ) ) | |
| 10 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 11 | tgptmd | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd ) | |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → 𝐺 ∈ TopMnd ) |
| 13 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 14 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 15 | 1 14 | grpinvf | ⊢ ( 𝐺 ∈ Grp → ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) |
| 16 | 4 13 15 | 3syl | ⊢ ( 𝜑 → ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) |
| 17 | fco | ⊢ ( ( ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ) → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) : 𝐴 ⟶ 𝐵 ) | |
| 18 | 16 7 17 | syl2anc | ⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) : 𝐴 ⟶ 𝐵 ) |
| 19 | 1 14 3 4 5 7 9 | tsmsinv | ⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ ( 𝐺 tsums ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) |
| 20 | 1 10 3 12 5 6 18 8 19 | tsmsadd | ⊢ ( 𝜑 → ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ∈ ( 𝐺 tsums ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) ) |
| 21 | tgptps | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp ) | |
| 22 | 4 21 | syl | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
| 23 | 1 3 22 5 6 | tsmscl | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ 𝐵 ) |
| 24 | 23 8 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 25 | 1 3 22 5 7 | tsmscl | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐻 ) ⊆ 𝐵 ) |
| 26 | 25 9 | sseldd | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 27 | 1 10 14 2 | grpsubval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 28 | 24 26 27 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 29 | 6 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| 30 | 7 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑘 ) ∈ 𝐵 ) |
| 31 | 1 10 14 2 | grpsubval | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑘 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 32 | 29 30 31 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 33 | 32 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 34 | 6 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 35 | 7 | feqmptd | ⊢ ( 𝜑 → 𝐻 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐻 ‘ 𝑘 ) ) ) |
| 36 | 5 29 30 34 35 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐻 ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 37 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ∈ V ) | |
| 38 | 16 | feqmptd | ⊢ ( 𝜑 → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ 𝐵 ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 39 | fveq2 | ⊢ ( 𝑥 = ( 𝐻 ‘ 𝑘 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) | |
| 40 | 30 35 38 39 | fmptco | ⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) = ( 𝑘 ∈ 𝐴 ↦ ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 41 | 5 29 37 34 40 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 42 | 33 36 41 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐻 ) = ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) |
| 43 | 42 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 tsums ( 𝐹 ∘f − 𝐻 ) ) = ( 𝐺 tsums ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) ) |
| 44 | 20 28 43 | 3eltr4d | ⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ∈ ( 𝐺 tsums ( 𝐹 ∘f − 𝐻 ) ) ) |