This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The convergent points of a finite topological group sum are the closure of the finite group sum operation. (Contributed by Mario Carneiro, 19-Sep-2015) (Revised by AV, 24-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmsid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tsmsid.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| tsmsid.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tsmsid.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | ||
| tsmsid.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| tsmsid.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| tsmsid.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| tsmsgsum.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| Assertion | tsmsgsum | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( cls ‘ 𝐽 ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tsmsid.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | tsmsid.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | tsmsid.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | |
| 5 | tsmsid.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | tsmsid.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 7 | tsmsid.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 8 | tsmsgsum.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 9 | 1 8 | istps | ⊢ ( 𝐺 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 10 | 4 9 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 11 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = ∪ 𝐽 ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → 𝐵 = ∪ 𝐽 ) |
| 13 | 12 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ∪ 𝐽 ) ) |
| 14 | elfpw | ⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ∈ Fin ) ) | |
| 15 | 14 | simplbi | ⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ⊆ 𝐴 ) |
| 16 | 15 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ⊆ 𝐴 ) |
| 17 | suppssdm | ⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 | |
| 18 | 17 6 | fssdm | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
| 20 | 16 19 | unssd | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ⊆ 𝐴 ) |
| 21 | elinel2 | ⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ∈ Fin ) | |
| 22 | 21 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ∈ Fin ) |
| 23 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐹 finSupp 0 ) |
| 24 | 23 | fsuppimpd | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 supp 0 ) ∈ Fin ) |
| 25 | unfi | ⊢ ( ( 𝑦 ∈ Fin ∧ ( 𝐹 supp 0 ) ∈ Fin ) → ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ∈ Fin ) | |
| 26 | 22 24 25 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ∈ Fin ) |
| 27 | elfpw | ⊢ ( ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ⊆ 𝐴 ∧ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ∈ Fin ) ) | |
| 28 | 20 26 27 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 29 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) | |
| 30 | id | ⊢ ( 𝑧 = ( 𝑦 ∪ ( 𝐹 supp 0 ) ) → 𝑧 = ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) | |
| 31 | 29 30 | sseqtrrid | ⊢ ( 𝑧 = ( 𝑦 ∪ ( 𝐹 supp 0 ) ) → 𝑦 ⊆ 𝑧 ) |
| 32 | pm5.5 | ⊢ ( 𝑦 ⊆ 𝑧 → ( ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) | |
| 33 | 31 32 | syl | ⊢ ( 𝑧 = ( 𝑦 ∪ ( 𝐹 supp 0 ) ) → ( ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) |
| 34 | reseq2 | ⊢ ( 𝑧 = ( 𝑦 ∪ ( 𝐹 supp 0 ) ) → ( 𝐹 ↾ 𝑧 ) = ( 𝐹 ↾ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) ) | |
| 35 | 34 | oveq2d | ⊢ ( 𝑧 = ( 𝑦 ∪ ( 𝐹 supp 0 ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) ) ) |
| 36 | 35 | eleq1d | ⊢ ( 𝑧 = ( 𝑦 ∪ ( 𝐹 supp 0 ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) ) ∈ 𝑢 ) ) |
| 37 | 33 36 | bitrd | ⊢ ( 𝑧 = ( 𝑦 ∪ ( 𝐹 supp 0 ) ) → ( ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) ) ∈ 𝑢 ) ) |
| 38 | 37 | rspcv | ⊢ ( ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) ) ∈ 𝑢 ) ) |
| 39 | 28 38 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) ) ∈ 𝑢 ) ) |
| 40 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐺 ∈ CMnd ) |
| 41 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐴 ∈ 𝑉 ) |
| 42 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 43 | ssun2 | ⊢ ( 𝐹 supp 0 ) ⊆ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) | |
| 44 | 43 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 supp 0 ) ⊆ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) |
| 45 | 1 2 40 41 42 44 23 | gsumres | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg 𝐹 ) ) |
| 46 | 45 | eleq1d | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) ) ∈ 𝑢 ↔ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) |
| 47 | 39 46 | sylibd | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) |
| 48 | 47 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) |
| 49 | 7 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
| 50 | elfpw | ⊢ ( ( 𝐹 supp 0 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( ( 𝐹 supp 0 ) ⊆ 𝐴 ∧ ( 𝐹 supp 0 ) ∈ Fin ) ) | |
| 51 | 18 49 50 | sylanbrc | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 52 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝐹 supp 0 ) ⊆ 𝑧 ) ) → 𝐺 ∈ CMnd ) |
| 53 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝐹 supp 0 ) ⊆ 𝑧 ) ) → 𝐴 ∈ 𝑉 ) |
| 54 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝐹 supp 0 ) ⊆ 𝑧 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 55 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝐹 supp 0 ) ⊆ 𝑧 ) ) → ( 𝐹 supp 0 ) ⊆ 𝑧 ) | |
| 56 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝐹 supp 0 ) ⊆ 𝑧 ) ) → 𝐹 finSupp 0 ) |
| 57 | 1 2 52 53 54 55 56 | gsumres | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝐹 supp 0 ) ⊆ 𝑧 ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) = ( 𝐺 Σg 𝐹 ) ) |
| 58 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝐹 supp 0 ) ⊆ 𝑧 ) ) → ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) | |
| 59 | 57 58 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝐹 supp 0 ) ⊆ 𝑧 ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) |
| 60 | 59 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐹 supp 0 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) |
| 61 | 60 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) → ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐹 supp 0 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) |
| 62 | sseq1 | ⊢ ( 𝑦 = ( 𝐹 supp 0 ) → ( 𝑦 ⊆ 𝑧 ↔ ( 𝐹 supp 0 ) ⊆ 𝑧 ) ) | |
| 63 | 62 | rspceaimv | ⊢ ( ( ( 𝐹 supp 0 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐹 supp 0 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) |
| 64 | 51 61 63 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) |
| 65 | 64 | expr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ( 𝐺 Σg 𝐹 ) ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
| 66 | 48 65 | impbid | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) |
| 67 | disjsn | ⊢ ( ( 𝑢 ∩ { ( 𝐺 Σg 𝐹 ) } ) = ∅ ↔ ¬ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) | |
| 68 | 67 | necon2abii | ⊢ ( ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ↔ ( 𝑢 ∩ { ( 𝐺 Σg 𝐹 ) } ) ≠ ∅ ) |
| 69 | 66 68 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( 𝑢 ∩ { ( 𝐺 Σg 𝐹 ) } ) ≠ ∅ ) ) |
| 70 | 69 | imbi2d | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ↔ ( 𝑥 ∈ 𝑢 → ( 𝑢 ∩ { ( 𝐺 Σg 𝐹 ) } ) ≠ ∅ ) ) ) |
| 71 | 70 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ( 𝑢 ∩ { ( 𝐺 Σg 𝐹 ) } ) ≠ ∅ ) ) ) |
| 72 | 13 71 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) ↔ ( 𝑥 ∈ ∪ 𝐽 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ( 𝑢 ∩ { ( 𝐺 Σg 𝐹 ) } ) ≠ ∅ ) ) ) ) |
| 73 | eqid | ⊢ ( 𝒫 𝐴 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) | |
| 74 | 1 8 73 3 4 5 6 | eltsms | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) ) ) |
| 75 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐽 ∈ Top ) | |
| 76 | 10 75 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 77 | 1 2 3 5 6 7 | gsumcl | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ) |
| 78 | 77 | snssd | ⊢ ( 𝜑 → { ( 𝐺 Σg 𝐹 ) } ⊆ 𝐵 ) |
| 79 | 78 12 | sseqtrd | ⊢ ( 𝜑 → { ( 𝐺 Σg 𝐹 ) } ⊆ ∪ 𝐽 ) |
| 80 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 81 | 80 | elcls2 | ⊢ ( ( 𝐽 ∈ Top ∧ { ( 𝐺 Σg 𝐹 ) } ⊆ ∪ 𝐽 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ↔ ( 𝑥 ∈ ∪ 𝐽 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ( 𝑢 ∩ { ( 𝐺 Σg 𝐹 ) } ) ≠ ∅ ) ) ) ) |
| 82 | 76 79 81 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ↔ ( 𝑥 ∈ ∪ 𝐽 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ( 𝑢 ∩ { ( 𝐺 Σg 𝐹 ) } ) ≠ ∅ ) ) ) ) |
| 83 | 72 74 82 | 3bitr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ) ) |
| 84 | 83 | eqrdv | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( cls ‘ 𝐽 ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ) |