This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqgabl.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| eqgabl.n | ⊢ − = ( -g ‘ 𝐺 ) | ||
| eqgabl.r | ⊢ ∼ = ( 𝐺 ~QG 𝑆 ) | ||
| Assertion | eqgabl | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐴 ∼ 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐵 − 𝐴 ) ∈ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqgabl.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | eqgabl.n | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | eqgabl.r | ⊢ ∼ = ( 𝐺 ~QG 𝑆 ) | |
| 4 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 6 | 1 4 5 3 | eqgval | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐴 ∼ 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐵 ) ∈ 𝑆 ) ) ) |
| 7 | simpll | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐺 ∈ Abel ) | |
| 8 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 9 | 8 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 10 | simprl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 11 | 1 4 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 12 | 9 10 11 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 13 | simprr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 14 | 1 5 | ablcom | ⊢ ( ( 𝐺 ∈ Abel ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 15 | 7 12 13 14 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 16 | 1 5 4 2 | grpsubval | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 − 𝐴 ) = ( 𝐵 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 17 | 13 10 16 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐵 − 𝐴 ) = ( 𝐵 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 18 | 15 17 | eqtr4d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐵 ) = ( 𝐵 − 𝐴 ) ) |
| 19 | 18 | eleq1d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐵 ) ∈ 𝑆 ↔ ( 𝐵 − 𝐴 ) ∈ 𝑆 ) ) |
| 20 | 19 | pm5.32da | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐵 ) ∈ 𝑆 ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐵 − 𝐴 ) ∈ 𝑆 ) ) ) |
| 21 | df-3an | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐵 ) ∈ 𝑆 ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐵 ) ∈ 𝑆 ) ) | |
| 22 | df-3an | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐵 − 𝐴 ) ∈ 𝑆 ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐵 − 𝐴 ) ∈ 𝑆 ) ) | |
| 23 | 20 21 22 | 3bitr4g | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐵 ) ∈ 𝑆 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐵 − 𝐴 ) ∈ 𝑆 ) ) ) |
| 24 | 6 23 | bitrd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐴 ∼ 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐵 − 𝐴 ) ∈ 𝑆 ) ) ) |