This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum in a topological group is uniquely determined up to a coset of cls ( { 0 } ) , which is a normal subgroup by clsnsg , 0nsg . (Contributed by Mario Carneiro, 22-Sep-2015) (Proof shortened by AV, 24-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgptsmscls.b | |- B = ( Base ` G ) |
|
| tgptsmscls.j | |- J = ( TopOpen ` G ) |
||
| tgptsmscls.1 | |- ( ph -> G e. CMnd ) |
||
| tgptsmscls.2 | |- ( ph -> G e. TopGrp ) |
||
| tgptsmscls.a | |- ( ph -> A e. V ) |
||
| tgptsmscls.f | |- ( ph -> F : A --> B ) |
||
| tgptsmscls.x | |- ( ph -> X e. ( G tsums F ) ) |
||
| Assertion | tgptsmscls | |- ( ph -> ( G tsums F ) = ( ( cls ` J ) ` { X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgptsmscls.b | |- B = ( Base ` G ) |
|
| 2 | tgptsmscls.j | |- J = ( TopOpen ` G ) |
|
| 3 | tgptsmscls.1 | |- ( ph -> G e. CMnd ) |
|
| 4 | tgptsmscls.2 | |- ( ph -> G e. TopGrp ) |
|
| 5 | tgptsmscls.a | |- ( ph -> A e. V ) |
|
| 6 | tgptsmscls.f | |- ( ph -> F : A --> B ) |
|
| 7 | tgptsmscls.x | |- ( ph -> X e. ( G tsums F ) ) |
|
| 8 | 4 | adantr | |- ( ( ph /\ x e. ( G tsums F ) ) -> G e. TopGrp ) |
| 9 | tgpgrp | |- ( G e. TopGrp -> G e. Grp ) |
|
| 10 | 8 9 | syl | |- ( ( ph /\ x e. ( G tsums F ) ) -> G e. Grp ) |
| 11 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 12 | 11 | 0subg | |- ( G e. Grp -> { ( 0g ` G ) } e. ( SubGrp ` G ) ) |
| 13 | 10 12 | syl | |- ( ( ph /\ x e. ( G tsums F ) ) -> { ( 0g ` G ) } e. ( SubGrp ` G ) ) |
| 14 | 2 | clssubg | |- ( ( G e. TopGrp /\ { ( 0g ` G ) } e. ( SubGrp ` G ) ) -> ( ( cls ` J ) ` { ( 0g ` G ) } ) e. ( SubGrp ` G ) ) |
| 15 | 8 13 14 | syl2anc | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( ( cls ` J ) ` { ( 0g ` G ) } ) e. ( SubGrp ` G ) ) |
| 16 | eqid | |- ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) = ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) |
|
| 17 | 1 16 | eqger | |- ( ( ( cls ` J ) ` { ( 0g ` G ) } ) e. ( SubGrp ` G ) -> ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) Er B ) |
| 18 | 15 17 | syl | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) Er B ) |
| 19 | tgptps | |- ( G e. TopGrp -> G e. TopSp ) |
|
| 20 | 4 19 | syl | |- ( ph -> G e. TopSp ) |
| 21 | 1 3 20 5 6 | tsmscl | |- ( ph -> ( G tsums F ) C_ B ) |
| 22 | 21 | sselda | |- ( ( ph /\ x e. ( G tsums F ) ) -> x e. B ) |
| 23 | 21 7 | sseldd | |- ( ph -> X e. B ) |
| 24 | 23 | adantr | |- ( ( ph /\ x e. ( G tsums F ) ) -> X e. B ) |
| 25 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 26 | 3 | adantr | |- ( ( ph /\ x e. ( G tsums F ) ) -> G e. CMnd ) |
| 27 | 5 | adantr | |- ( ( ph /\ x e. ( G tsums F ) ) -> A e. V ) |
| 28 | 6 | adantr | |- ( ( ph /\ x e. ( G tsums F ) ) -> F : A --> B ) |
| 29 | 7 | adantr | |- ( ( ph /\ x e. ( G tsums F ) ) -> X e. ( G tsums F ) ) |
| 30 | simpr | |- ( ( ph /\ x e. ( G tsums F ) ) -> x e. ( G tsums F ) ) |
|
| 31 | 1 25 26 8 27 28 28 29 30 | tsmssub | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( X ( -g ` G ) x ) e. ( G tsums ( F oF ( -g ` G ) F ) ) ) |
| 32 | 28 | ffvelcdmda | |- ( ( ( ph /\ x e. ( G tsums F ) ) /\ k e. A ) -> ( F ` k ) e. B ) |
| 33 | 28 | feqmptd | |- ( ( ph /\ x e. ( G tsums F ) ) -> F = ( k e. A |-> ( F ` k ) ) ) |
| 34 | 27 32 32 33 33 | offval2 | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( F oF ( -g ` G ) F ) = ( k e. A |-> ( ( F ` k ) ( -g ` G ) ( F ` k ) ) ) ) |
| 35 | 10 | adantr | |- ( ( ( ph /\ x e. ( G tsums F ) ) /\ k e. A ) -> G e. Grp ) |
| 36 | 1 11 25 | grpsubid | |- ( ( G e. Grp /\ ( F ` k ) e. B ) -> ( ( F ` k ) ( -g ` G ) ( F ` k ) ) = ( 0g ` G ) ) |
| 37 | 35 32 36 | syl2anc | |- ( ( ( ph /\ x e. ( G tsums F ) ) /\ k e. A ) -> ( ( F ` k ) ( -g ` G ) ( F ` k ) ) = ( 0g ` G ) ) |
| 38 | 37 | mpteq2dva | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( k e. A |-> ( ( F ` k ) ( -g ` G ) ( F ` k ) ) ) = ( k e. A |-> ( 0g ` G ) ) ) |
| 39 | 34 38 | eqtrd | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( F oF ( -g ` G ) F ) = ( k e. A |-> ( 0g ` G ) ) ) |
| 40 | 39 | oveq2d | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( G tsums ( F oF ( -g ` G ) F ) ) = ( G tsums ( k e. A |-> ( 0g ` G ) ) ) ) |
| 41 | 8 19 | syl | |- ( ( ph /\ x e. ( G tsums F ) ) -> G e. TopSp ) |
| 42 | 1 11 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. B ) |
| 43 | 10 42 | syl | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( 0g ` G ) e. B ) |
| 44 | 43 | adantr | |- ( ( ( ph /\ x e. ( G tsums F ) ) /\ k e. A ) -> ( 0g ` G ) e. B ) |
| 45 | 44 | fmpttd | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( k e. A |-> ( 0g ` G ) ) : A --> B ) |
| 46 | fconstmpt | |- ( A X. { ( 0g ` G ) } ) = ( k e. A |-> ( 0g ` G ) ) |
|
| 47 | fvexd | |- ( ph -> ( 0g ` G ) e. _V ) |
|
| 48 | 5 47 | fczfsuppd | |- ( ph -> ( A X. { ( 0g ` G ) } ) finSupp ( 0g ` G ) ) |
| 49 | 48 | adantr | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( A X. { ( 0g ` G ) } ) finSupp ( 0g ` G ) ) |
| 50 | 46 49 | eqbrtrrid | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( k e. A |-> ( 0g ` G ) ) finSupp ( 0g ` G ) ) |
| 51 | 1 11 26 41 27 45 50 2 | tsmsgsum | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( G tsums ( k e. A |-> ( 0g ` G ) ) ) = ( ( cls ` J ) ` { ( G gsum ( k e. A |-> ( 0g ` G ) ) ) } ) ) |
| 52 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
|
| 53 | 26 52 | syl | |- ( ( ph /\ x e. ( G tsums F ) ) -> G e. Mnd ) |
| 54 | 11 | gsumz | |- ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( k e. A |-> ( 0g ` G ) ) ) = ( 0g ` G ) ) |
| 55 | 53 27 54 | syl2anc | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( G gsum ( k e. A |-> ( 0g ` G ) ) ) = ( 0g ` G ) ) |
| 56 | 55 | sneqd | |- ( ( ph /\ x e. ( G tsums F ) ) -> { ( G gsum ( k e. A |-> ( 0g ` G ) ) ) } = { ( 0g ` G ) } ) |
| 57 | 56 | fveq2d | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( ( cls ` J ) ` { ( G gsum ( k e. A |-> ( 0g ` G ) ) ) } ) = ( ( cls ` J ) ` { ( 0g ` G ) } ) ) |
| 58 | 40 51 57 | 3eqtrd | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( G tsums ( F oF ( -g ` G ) F ) ) = ( ( cls ` J ) ` { ( 0g ` G ) } ) ) |
| 59 | 31 58 | eleqtrd | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( X ( -g ` G ) x ) e. ( ( cls ` J ) ` { ( 0g ` G ) } ) ) |
| 60 | isabl | |- ( G e. Abel <-> ( G e. Grp /\ G e. CMnd ) ) |
|
| 61 | 10 26 60 | sylanbrc | |- ( ( ph /\ x e. ( G tsums F ) ) -> G e. Abel ) |
| 62 | 1 | subgss | |- ( ( ( cls ` J ) ` { ( 0g ` G ) } ) e. ( SubGrp ` G ) -> ( ( cls ` J ) ` { ( 0g ` G ) } ) C_ B ) |
| 63 | 15 62 | syl | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( ( cls ` J ) ` { ( 0g ` G ) } ) C_ B ) |
| 64 | 1 25 16 | eqgabl | |- ( ( G e. Abel /\ ( ( cls ` J ) ` { ( 0g ` G ) } ) C_ B ) -> ( x ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) X <-> ( x e. B /\ X e. B /\ ( X ( -g ` G ) x ) e. ( ( cls ` J ) ` { ( 0g ` G ) } ) ) ) ) |
| 65 | 61 63 64 | syl2anc | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( x ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) X <-> ( x e. B /\ X e. B /\ ( X ( -g ` G ) x ) e. ( ( cls ` J ) ` { ( 0g ` G ) } ) ) ) ) |
| 66 | 22 24 59 65 | mpbir3and | |- ( ( ph /\ x e. ( G tsums F ) ) -> x ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) X ) |
| 67 | 18 66 | ersym | |- ( ( ph /\ x e. ( G tsums F ) ) -> X ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) x ) |
| 68 | 16 | releqg | |- Rel ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) |
| 69 | relelec | |- ( Rel ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) -> ( x e. [ X ] ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) <-> X ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) x ) ) |
|
| 70 | 68 69 | ax-mp | |- ( x e. [ X ] ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) <-> X ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) x ) |
| 71 | 67 70 | sylibr | |- ( ( ph /\ x e. ( G tsums F ) ) -> x e. [ X ] ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) ) |
| 72 | eqid | |- ( ( cls ` J ) ` { ( 0g ` G ) } ) = ( ( cls ` J ) ` { ( 0g ` G ) } ) |
|
| 73 | 1 2 11 16 72 | snclseqg | |- ( ( G e. TopGrp /\ X e. B ) -> [ X ] ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) = ( ( cls ` J ) ` { X } ) ) |
| 74 | 8 24 73 | syl2anc | |- ( ( ph /\ x e. ( G tsums F ) ) -> [ X ] ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) = ( ( cls ` J ) ` { X } ) ) |
| 75 | 71 74 | eleqtrd | |- ( ( ph /\ x e. ( G tsums F ) ) -> x e. ( ( cls ` J ) ` { X } ) ) |
| 76 | 75 | ex | |- ( ph -> ( x e. ( G tsums F ) -> x e. ( ( cls ` J ) ` { X } ) ) ) |
| 77 | 76 | ssrdv | |- ( ph -> ( G tsums F ) C_ ( ( cls ` J ) ` { X } ) ) |
| 78 | 1 2 3 20 5 6 7 | tsmscls | |- ( ph -> ( ( cls ` J ) ` { X } ) C_ ( G tsums F ) ) |
| 79 | 77 78 | eqssd | |- ( ph -> ( G tsums F ) = ( ( cls ` J ) ` { X } ) ) |