This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0nsg.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| Assertion | 0nsg | ⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nsg.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | 1 | 0subg | ⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 3 | elsni | ⊢ ( 𝑦 ∈ { 0 } → 𝑦 = 0 ) | |
| 4 | 3 | ad2antll | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ { 0 } ) ) → 𝑦 = 0 ) |
| 5 | 4 | oveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ { 0 } ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 0 ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 8 | 6 7 1 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 0 ) = 𝑥 ) |
| 9 | 8 | adantrr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ { 0 } ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 0 ) = 𝑥 ) |
| 10 | 5 9 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ { 0 } ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) |
| 11 | 10 | oveq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ { 0 } ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( -g ‘ 𝐺 ) 𝑥 ) ) |
| 12 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 13 | 6 1 12 | grpsubid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑥 ) = 0 ) |
| 14 | 13 | adantrr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ { 0 } ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑥 ) = 0 ) |
| 15 | 11 14 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ { 0 } ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) = 0 ) |
| 16 | ovex | ⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ V | |
| 17 | 16 | elsn | ⊢ ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ { 0 } ↔ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) = 0 ) |
| 18 | 15 17 | sylibr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ { 0 } ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ { 0 } ) |
| 19 | 18 | ralrimivva | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ { 0 } ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ { 0 } ) |
| 20 | 6 7 12 | isnsg3 | ⊢ ( { 0 } ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( { 0 } ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ { 0 } ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ { 0 } ) ) |
| 21 | 2 19 20 | sylanbrc | ⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( NrmSGrp ‘ 𝐺 ) ) |