This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum in a topological group is an element of the group. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmscl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tsmscl.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tsmscl.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | ||
| tsmscl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| tsmscl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| Assertion | tsmscl | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmscl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tsmscl.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 3 | tsmscl.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | |
| 4 | tsmscl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | tsmscl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 6 | eqid | ⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( 𝒫 𝐴 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) | |
| 8 | 1 6 7 2 3 4 5 | eltsms | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑤 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑤 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑤 ) ) ) ) ) |
| 9 | simpl | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑤 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑤 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑤 ) ) ) → 𝑥 ∈ 𝐵 ) | |
| 10 | 8 9 | biimtrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → 𝑥 ∈ 𝐵 ) ) |
| 11 | 10 | ssrdv | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ 𝐵 ) |