This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The coset of the closure of the identity is the closure of a point. (Contributed by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | snclseqg.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| snclseqg.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| snclseqg.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| snclseqg.r | ⊢ ∼ = ( 𝐺 ~QG 𝑆 ) | ||
| snclseqg.s | ⊢ 𝑆 = ( ( cls ‘ 𝐽 ) ‘ { 0 } ) | ||
| Assertion | snclseqg | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snclseqg.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | snclseqg.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 3 | snclseqg.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | snclseqg.r | ⊢ ∼ = ( 𝐺 ~QG 𝑆 ) | |
| 5 | snclseqg.s | ⊢ 𝑆 = ( ( cls ‘ 𝐽 ) ‘ { 0 } ) | |
| 6 | 5 | imaeq2i | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑆 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ ( ( cls ‘ 𝐽 ) ‘ { 0 } ) ) |
| 7 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 9 | 2 1 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 11 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ Top ) |
| 13 | 1 3 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝑋 ) |
| 14 | 8 13 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 0 ∈ 𝑋 ) |
| 15 | 14 | snssd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → { 0 } ⊆ 𝑋 ) |
| 16 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 17 | 10 16 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 18 | 15 17 | sseqtrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → { 0 } ⊆ ∪ 𝐽 ) |
| 19 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 20 | 19 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ { 0 } ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ { 0 } ) ⊆ ∪ 𝐽 ) |
| 21 | 12 18 20 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ { 0 } ) ⊆ ∪ 𝐽 ) |
| 22 | 21 17 | sseqtrrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ { 0 } ) ⊆ 𝑋 ) |
| 23 | 5 22 | eqsstrid | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ⊆ 𝑋 ) |
| 24 | simpr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 25 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 26 | 1 4 25 | eqglact | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑆 ) ) |
| 27 | 8 23 24 26 | syl3anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑆 ) ) |
| 28 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) | |
| 29 | 28 1 25 2 | tgplacthmeo | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 30 | 19 | hmeocls | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ { 0 } ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ { 0 } ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ ( ( cls ‘ 𝐽 ) ‘ { 0 } ) ) ) |
| 31 | 29 18 30 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ { 0 } ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ ( ( cls ‘ 𝐽 ) ‘ { 0 } ) ) ) |
| 32 | 6 27 31 | 3eqtr4a | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ { 0 } ) ) ) |
| 33 | df-ima | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ { 0 } ) = ran ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) ↾ { 0 } ) | |
| 34 | 15 | resmptd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) ↾ { 0 } ) = ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 35 | 34 | rneqd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ran ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) ↾ { 0 } ) = ran ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 36 | 33 35 | eqtrid | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ { 0 } ) = ran ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 37 | 3 | fvexi | ⊢ 0 ∈ V |
| 38 | oveq2 | ⊢ ( 𝑥 = 0 → ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝐴 ( +g ‘ 𝐺 ) 0 ) ) | |
| 39 | 38 | eqeq2d | ⊢ ( 𝑥 = 0 → ( 𝑦 = ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ↔ 𝑦 = ( 𝐴 ( +g ‘ 𝐺 ) 0 ) ) ) |
| 40 | 37 39 | rexsn | ⊢ ( ∃ 𝑥 ∈ { 0 } 𝑦 = ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ↔ 𝑦 = ( 𝐴 ( +g ‘ 𝐺 ) 0 ) ) |
| 41 | 1 25 3 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( +g ‘ 𝐺 ) 0 ) = 𝐴 ) |
| 42 | 7 41 | sylan | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( +g ‘ 𝐺 ) 0 ) = 𝐴 ) |
| 43 | 42 | eqeq2d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑦 = ( 𝐴 ( +g ‘ 𝐺 ) 0 ) ↔ 𝑦 = 𝐴 ) ) |
| 44 | 40 43 | bitrid | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑥 ∈ { 0 } 𝑦 = ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ↔ 𝑦 = 𝐴 ) ) |
| 45 | 44 | abbidv | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → { 𝑦 ∣ ∃ 𝑥 ∈ { 0 } 𝑦 = ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) } = { 𝑦 ∣ 𝑦 = 𝐴 } ) |
| 46 | eqid | ⊢ ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) | |
| 47 | 46 | rnmpt | ⊢ ran ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) = { 𝑦 ∣ ∃ 𝑥 ∈ { 0 } 𝑦 = ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) } |
| 48 | df-sn | ⊢ { 𝐴 } = { 𝑦 ∣ 𝑦 = 𝐴 } | |
| 49 | 45 47 48 | 3eqtr4g | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ran ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) = { 𝐴 } ) |
| 50 | 36 49 | eqtrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ { 0 } ) = { 𝐴 } ) |
| 51 | 50 | fveq2d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ { 0 } ) ) = ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 52 | 32 51 | eqtrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) |