This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of a subgroup in a topological group is a subgroup. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgntr.h | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| Assertion | clssubg | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgntr.h | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 3 | 1 2 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 5 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → 𝐽 ∈ Top ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐽 ∈ Top ) |
| 7 | 2 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 9 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) | |
| 10 | 4 9 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) |
| 11 | 8 10 | sseqtrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 12 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 13 | 12 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∪ 𝐽 ) |
| 14 | 6 11 13 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∪ 𝐽 ) |
| 15 | 14 10 | sseqtrrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 16 | 12 | sscls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 17 | 6 11 16 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 18 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 19 | 18 | subg0cl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 20 | 19 | adantl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 21 | 20 | ne0d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ≠ ∅ ) |
| 22 | ssn0 | ⊢ ( ( 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑆 ≠ ∅ ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ≠ ∅ ) | |
| 23 | 17 21 22 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ≠ ∅ ) |
| 24 | df-ov | ⊢ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 25 | opelxpi | ⊢ ( ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) × ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) | |
| 26 | txcls | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) ) → ( ( cls ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( 𝑆 × 𝑆 ) ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) × ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) | |
| 27 | 4 4 8 8 26 | syl22anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( 𝑆 × 𝑆 ) ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) × ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 28 | txtopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) → ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) | |
| 29 | 4 4 28 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) |
| 30 | topontop | ⊢ ( ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) → ( 𝐽 ×t 𝐽 ) ∈ Top ) | |
| 31 | 29 30 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐽 ×t 𝐽 ) ∈ Top ) |
| 32 | cnvimass | ⊢ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ⊆ dom ( -g ‘ 𝐺 ) | |
| 33 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 34 | 33 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐺 ∈ Grp ) |
| 35 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 36 | 2 35 | grpsubf | ⊢ ( 𝐺 ∈ Grp → ( -g ‘ 𝐺 ) : ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ⟶ ( Base ‘ 𝐺 ) ) |
| 37 | 34 36 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( -g ‘ 𝐺 ) : ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ⟶ ( Base ‘ 𝐺 ) ) |
| 38 | 32 37 | fssdm | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
| 39 | toponuni | ⊢ ( ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) → ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) = ∪ ( 𝐽 ×t 𝐽 ) ) | |
| 40 | 29 39 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) = ∪ ( 𝐽 ×t 𝐽 ) ) |
| 41 | 38 40 | sseqtrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ⊆ ∪ ( 𝐽 ×t 𝐽 ) ) |
| 42 | 35 | subgsubcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 43 | 42 | 3expb | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 44 | 43 | ralrimivva | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 45 | fveq2 | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( -g ‘ 𝐺 ) ‘ 𝑧 ) = ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 46 | 45 24 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( -g ‘ 𝐺 ) ‘ 𝑧 ) = ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) |
| 47 | 46 | eleq1d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( ( -g ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ↔ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) |
| 48 | 47 | ralxp | ⊢ ( ∀ 𝑧 ∈ ( 𝑆 × 𝑆 ) ( ( -g ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 49 | 44 48 | sylibr | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ∀ 𝑧 ∈ ( 𝑆 × 𝑆 ) ( ( -g ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ) |
| 50 | 49 | adantl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ∀ 𝑧 ∈ ( 𝑆 × 𝑆 ) ( ( -g ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ) |
| 51 | 37 | ffund | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → Fun ( -g ‘ 𝐺 ) ) |
| 52 | xpss12 | ⊢ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑆 × 𝑆 ) ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) | |
| 53 | 8 8 52 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑆 × 𝑆 ) ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
| 54 | 37 | fdmd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → dom ( -g ‘ 𝐺 ) = ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
| 55 | 53 54 | sseqtrrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑆 × 𝑆 ) ⊆ dom ( -g ‘ 𝐺 ) ) |
| 56 | funimass5 | ⊢ ( ( Fun ( -g ‘ 𝐺 ) ∧ ( 𝑆 × 𝑆 ) ⊆ dom ( -g ‘ 𝐺 ) ) → ( ( 𝑆 × 𝑆 ) ⊆ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ↔ ∀ 𝑧 ∈ ( 𝑆 × 𝑆 ) ( ( -g ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ) ) | |
| 57 | 51 55 56 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑆 × 𝑆 ) ⊆ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ↔ ∀ 𝑧 ∈ ( 𝑆 × 𝑆 ) ( ( -g ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ) ) |
| 58 | 50 57 | mpbird | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑆 × 𝑆 ) ⊆ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ) |
| 59 | eqid | ⊢ ∪ ( 𝐽 ×t 𝐽 ) = ∪ ( 𝐽 ×t 𝐽 ) | |
| 60 | 59 | clsss | ⊢ ( ( ( 𝐽 ×t 𝐽 ) ∈ Top ∧ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ⊆ ∪ ( 𝐽 ×t 𝐽 ) ∧ ( 𝑆 × 𝑆 ) ⊆ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ) → ( ( cls ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( 𝑆 × 𝑆 ) ) ⊆ ( ( cls ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ) ) |
| 61 | 31 41 58 60 | syl3anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( 𝑆 × 𝑆 ) ) ⊆ ( ( cls ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ) ) |
| 62 | 1 35 | tgpsubcn | ⊢ ( 𝐺 ∈ TopGrp → ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 63 | 62 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 64 | 12 | cncls2i | ⊢ ( ( ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( cls ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ) ⊆ ( ◡ ( -g ‘ 𝐺 ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 65 | 63 11 64 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ) ⊆ ( ◡ ( -g ‘ 𝐺 ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 66 | 61 65 | sstrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( 𝑆 × 𝑆 ) ) ⊆ ( ◡ ( -g ‘ 𝐺 ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 67 | 27 66 | eqsstrrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) × ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ◡ ( -g ‘ 𝐺 ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 68 | 67 | sselda | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 〈 𝑥 , 𝑦 〉 ∈ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) × ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐺 ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 69 | 25 68 | sylan2 | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐺 ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 70 | 33 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) → 𝐺 ∈ Grp ) |
| 71 | ffn | ⊢ ( ( -g ‘ 𝐺 ) : ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ⟶ ( Base ‘ 𝐺 ) → ( -g ‘ 𝐺 ) Fn ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) | |
| 72 | elpreima | ⊢ ( ( -g ‘ 𝐺 ) Fn ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐺 ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ∧ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) | |
| 73 | 70 36 71 72 | 4syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐺 ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ∧ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
| 74 | 69 73 | mpbid | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ∧ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 75 | 74 | simprd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) → ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 76 | 24 75 | eqeltrid | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 77 | 76 | ralrimivva | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ∀ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∀ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 78 | 2 35 | issubg4 | ⊢ ( 𝐺 ∈ Grp → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∀ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
| 79 | 34 78 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∀ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
| 80 | 15 23 77 79 | mpbir3and | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |