This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of limit points to an infinite sum in a topological group is closed. (Contributed by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgptsmscls.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tgptsmscls.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| tgptsmscls.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tgptsmscls.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopGrp ) | ||
| tgptsmscls.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| tgptsmscls.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| Assertion | tgptsmscld | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgptsmscls.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tgptsmscls.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 3 | tgptsmscls.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | tgptsmscls.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopGrp ) | |
| 5 | tgptsmscls.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | tgptsmscls.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 7 | 2 1 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 8 | 4 7 | syl | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 9 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐽 ∈ Top ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 11 | 0cld | ⊢ ( 𝐽 ∈ Top → ∅ ∈ ( Clsd ‘ 𝐽 ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → ∅ ∈ ( Clsd ‘ 𝐽 ) ) |
| 13 | eleq1 | ⊢ ( ( 𝐺 tsums 𝐹 ) = ∅ → ( ( 𝐺 tsums 𝐹 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ∅ ∈ ( Clsd ‘ 𝐽 ) ) ) | |
| 14 | 12 13 | syl5ibrcom | ⊢ ( 𝜑 → ( ( 𝐺 tsums 𝐹 ) = ∅ → ( 𝐺 tsums 𝐹 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 15 | n0 | ⊢ ( ( 𝐺 tsums 𝐹 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) | |
| 16 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ CMnd ) |
| 17 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ TopGrp ) |
| 18 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐴 ∈ 𝑉 ) |
| 19 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 20 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) | |
| 21 | 1 2 16 17 18 19 20 | tgptsmscls | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums 𝐹 ) = ( ( cls ‘ 𝐽 ) ‘ { 𝑥 } ) ) |
| 22 | tgptps | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp ) | |
| 23 | 4 22 | syl | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
| 24 | 1 3 23 5 6 | tsmscl | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ 𝐵 ) |
| 25 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = ∪ 𝐽 ) | |
| 26 | 8 25 | syl | ⊢ ( 𝜑 → 𝐵 = ∪ 𝐽 ) |
| 27 | 24 26 | sseqtrd | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ ∪ 𝐽 ) |
| 28 | 27 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥 ∈ ∪ 𝐽 ) |
| 29 | 28 | snssd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → { 𝑥 } ⊆ ∪ 𝐽 ) |
| 30 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 31 | 30 | clscld | ⊢ ( ( 𝐽 ∈ Top ∧ { 𝑥 } ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ { 𝑥 } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 32 | 10 29 31 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( ( cls ‘ 𝐽 ) ‘ { 𝑥 } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 33 | 21 32 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums 𝐹 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 34 | 33 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → ( 𝐺 tsums 𝐹 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 35 | 34 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑥 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → ( 𝐺 tsums 𝐹 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 36 | 15 35 | biimtrid | ⊢ ( 𝜑 → ( ( 𝐺 tsums 𝐹 ) ≠ ∅ → ( 𝐺 tsums 𝐹 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 37 | 14 36 | pm2.61dne | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ∈ ( Clsd ‘ 𝐽 ) ) |