This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014) (Proof shortened by SN, 31-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0subg.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| Assertion | 0subg | ⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0subg.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 3 | 1 | 0subm | ⊢ ( 𝐺 ∈ Mnd → { 0 } ∈ ( SubMnd ‘ 𝐺 ) ) |
| 4 | 2 3 | syl | ⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( SubMnd ‘ 𝐺 ) ) |
| 5 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 6 | 1 5 | grpinvid | ⊢ ( 𝐺 ∈ Grp → ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
| 7 | fvex | ⊢ ( ( invg ‘ 𝐺 ) ‘ 0 ) ∈ V | |
| 8 | 7 | elsn | ⊢ ( ( ( invg ‘ 𝐺 ) ‘ 0 ) ∈ { 0 } ↔ ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
| 9 | 6 8 | sylibr | ⊢ ( 𝐺 ∈ Grp → ( ( invg ‘ 𝐺 ) ‘ 0 ) ∈ { 0 } ) |
| 10 | 1 | fvexi | ⊢ 0 ∈ V |
| 11 | fveq2 | ⊢ ( 𝑎 = 0 → ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) = ( ( invg ‘ 𝐺 ) ‘ 0 ) ) | |
| 12 | 11 | eleq1d | ⊢ ( 𝑎 = 0 → ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ { 0 } ↔ ( ( invg ‘ 𝐺 ) ‘ 0 ) ∈ { 0 } ) ) |
| 13 | 10 12 | ralsn | ⊢ ( ∀ 𝑎 ∈ { 0 } ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ { 0 } ↔ ( ( invg ‘ 𝐺 ) ‘ 0 ) ∈ { 0 } ) |
| 14 | 9 13 | sylibr | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑎 ∈ { 0 } ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ { 0 } ) |
| 15 | 5 | issubg3 | ⊢ ( 𝐺 ∈ Grp → ( { 0 } ∈ ( SubGrp ‘ 𝐺 ) ↔ ( { 0 } ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑎 ∈ { 0 } ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ { 0 } ) ) ) |
| 16 | 4 14 15 | mpbir2and | ⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |