This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of a normal subgroup is a normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgntr.h | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| Assertion | clsnsg | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgntr.h | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 2 | nsgsubg | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 3 | 1 | clssubg | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 4 | 2 3 | sylan2 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 | df-ima | ⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ran ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ↾ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 7 | 1 6 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 9 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → 𝐽 ∈ Top ) | |
| 10 | 8 9 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝐽 ∈ Top ) |
| 11 | 2 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 12 | 6 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 14 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) | |
| 15 | 8 14 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) |
| 16 | 13 15 | sseqtrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 17 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 18 | 17 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∪ 𝐽 ) |
| 19 | 10 16 18 | syl2anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∪ 𝐽 ) |
| 20 | 19 15 | sseqtrrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 21 | 20 | resmptd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ↾ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ) |
| 22 | 21 | rneqd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ran ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ↾ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ran ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ) |
| 23 | 5 22 | eqtrid | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ran ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ) |
| 24 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 25 | tgptmd | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd ) | |
| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝐺 ∈ TopMnd ) |
| 27 | simpr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) | |
| 28 | 8 8 27 | cnmptc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ 𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 29 | 8 | cnmptid | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ 𝑦 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 30 | 1 24 26 8 28 29 | cnmpt1plusg | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 31 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 32 | 1 31 | tgpsubcn | ⊢ ( 𝐺 ∈ TopGrp → ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 33 | 32 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 34 | 8 30 28 33 | cnmpt12f | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 35 | 17 | cnclsi | ⊢ ( ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) “ 𝑆 ) ) ) |
| 36 | 34 16 35 | syl2anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) “ 𝑆 ) ) ) |
| 37 | df-ima | ⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) “ 𝑆 ) = ran ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ↾ 𝑆 ) | |
| 38 | 13 | resmptd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ↾ 𝑆 ) = ( 𝑦 ∈ 𝑆 ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ) |
| 39 | 38 | rneqd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ran ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ↾ 𝑆 ) = ran ( 𝑦 ∈ 𝑆 ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ) |
| 40 | 37 39 | eqtrid | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) “ 𝑆 ) = ran ( 𝑦 ∈ 𝑆 ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ) |
| 41 | 6 24 31 | nsgconj | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑆 ) |
| 42 | 41 | ad4ant234 | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝑆 ) |
| 43 | 42 | fmpttd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ∈ 𝑆 ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) : 𝑆 ⟶ 𝑆 ) |
| 44 | 43 | frnd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ran ( 𝑦 ∈ 𝑆 ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ⊆ 𝑆 ) |
| 45 | 40 44 | eqsstrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) “ 𝑆 ) ⊆ 𝑆 ) |
| 46 | 17 | clsss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) “ 𝑆 ) ⊆ 𝑆 ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) “ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 47 | 10 16 45 46 | syl3anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) “ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 48 | 36 47 | sstrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 49 | 23 48 | eqsstrrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ran ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 50 | ovex | ⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ V | |
| 51 | eqid | ⊢ ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) | |
| 52 | 50 51 | fnmpti | ⊢ ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) Fn ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) |
| 53 | df-f | ⊢ ( ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) : ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⟶ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) Fn ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ ran ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) | |
| 54 | 52 53 | mpbiran | ⊢ ( ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) : ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⟶ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ran ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 55 | 49 54 | sylibr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) : ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⟶ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 56 | 51 | fmpt | ⊢ ( ∀ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ) : ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⟶ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 57 | 55 56 | sylibr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ∀ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 58 | 57 | ralrimiva | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 59 | 6 24 31 | isnsg3 | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 60 | 4 58 59 | sylanbrc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( NrmSGrp ‘ 𝐺 ) ) |