This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One half of tgptsmscls , true in any commutative monoid topological space. (Contributed by Mario Carneiro, 21-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmscls.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tsmscls.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| tsmscls.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tsmscls.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | ||
| tsmscls.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| tsmscls.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| tsmscls.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) | ||
| Assertion | tsmscls | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ⊆ ( 𝐺 tsums 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmscls.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tsmscls.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 3 | tsmscls.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | tsmscls.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | |
| 5 | tsmscls.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | tsmscls.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 7 | tsmscls.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) | |
| 8 | eqid | ⊢ ( 𝒫 𝐴 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) | |
| 9 | eqid | ⊢ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) = ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) | |
| 10 | 1 2 8 9 4 5 6 | tsmsval | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( 𝐽 fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) |
| 11 | 1 2 | istps | ⊢ ( 𝐺 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 12 | 4 11 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 13 | eqid | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) = ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) | |
| 14 | 8 13 9 5 | tsmsfbas | ⊢ ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) ∈ ( fBas ‘ ( 𝒫 𝐴 ∩ Fin ) ) ) |
| 15 | fgcl | ⊢ ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) ∈ ( fBas ‘ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) ) ∈ ( Fil ‘ ( 𝒫 𝐴 ∩ Fin ) ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) ) ∈ ( Fil ‘ ( 𝒫 𝐴 ∩ Fin ) ) ) |
| 17 | 1 8 3 5 6 | tsmslem1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝐵 ) |
| 18 | 17 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) : ( 𝒫 𝐴 ∩ Fin ) ⟶ 𝐵 ) |
| 19 | flfval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ∧ ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) ) ∈ ( Fil ‘ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) : ( 𝒫 𝐴 ∩ Fin ) ⟶ 𝐵 ) → ( ( 𝐽 fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) = ( 𝐽 fLim ( ( 𝐵 FilMap ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ‘ ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) ) ) ) ) | |
| 20 | 12 16 18 19 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐽 fLimf ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) = ( 𝐽 fLim ( ( 𝐵 FilMap ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ‘ ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) ) ) ) ) |
| 21 | 10 20 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( 𝐽 fLim ( ( 𝐵 FilMap ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ‘ ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) ) ) ) ) |
| 22 | 7 21 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐽 fLim ( ( 𝐵 FilMap ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ‘ ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) ) ) ) ) |
| 23 | flimsncls | ⊢ ( 𝑋 ∈ ( 𝐽 fLim ( ( 𝐵 FilMap ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ‘ ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ⊆ ( 𝐽 fLim ( ( 𝐵 FilMap ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ‘ ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) ) ) ) ) | |
| 24 | 22 23 | syl | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ⊆ ( 𝐽 fLim ( ( 𝐵 FilMap ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ‘ ( ( 𝒫 𝐴 ∩ Fin ) filGen ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∣ 𝑥 ⊆ 𝑦 } ) ) ) ) ) |
| 25 | 24 21 | sseqtrrd | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ⊆ ( 𝐺 tsums 𝐹 ) ) |