This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group operation is associative. (Contributed by NM, 14-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpcl.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpcl.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 4 | 1 2 | mndass | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |
| 5 | 3 4 | sylan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |