This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction is a continuous function on product topologies. (Contributed by Mario Carneiro, 7-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptrescn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| ptrescn.2 | ⊢ 𝐽 = ( ∏t ‘ 𝐹 ) | ||
| ptrescn.3 | ⊢ 𝐾 = ( ∏t ‘ ( 𝐹 ↾ 𝐵 ) ) | ||
| Assertion | ptrescn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptrescn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ptrescn.2 | ⊢ 𝐽 = ( ∏t ‘ 𝐹 ) | |
| 3 | ptrescn.3 | ⊢ 𝐾 = ( ∏t ‘ ( 𝐹 ↾ 𝐵 ) ) | |
| 4 | simpl3 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ⊆ 𝐴 ) | |
| 5 | 2 | ptuni | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐽 ) |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐽 ) |
| 7 | 6 1 | eqtr4di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = 𝑋 ) |
| 8 | 7 | eleq2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↔ 𝑥 ∈ 𝑋 ) ) |
| 9 | 8 | biimpar | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 10 | resixp | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑥 ↾ 𝐵 ) ∈ X 𝑘 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 11 | 4 9 10 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ↾ 𝐵 ) ∈ X 𝑘 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 12 | ixpeq2 | ⊢ ( ∀ 𝑘 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) → X 𝑘 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) = X 𝑘 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 13 | fvres | ⊢ ( 𝑘 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 14 | 13 | unieqd | ⊢ ( 𝑘 ∈ 𝐵 → ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 15 | 12 14 | mprg | ⊢ X 𝑘 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) = X 𝑘 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑘 ) |
| 16 | ssexg | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐵 ∈ V ) | |
| 17 | 16 | ancoms | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
| 18 | 17 | 3adant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
| 19 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ) | |
| 20 | 19 | 3adant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ) |
| 21 | 3 | ptuni | ⊢ ( ( 𝐵 ∈ V ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ) → X 𝑘 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) = ∪ 𝐾 ) |
| 22 | 18 20 21 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → X 𝑘 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) = ∪ 𝐾 ) |
| 23 | 15 22 | eqtr3id | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → X 𝑘 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐾 ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → X 𝑘 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐾 ) |
| 25 | 11 24 | eleqtrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ↾ 𝐵 ) ∈ ∪ 𝐾 ) |
| 26 | 25 | fmpttd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) : 𝑋 ⟶ ∪ 𝐾 ) |
| 27 | fimacnv | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) : 𝑋 ⟶ ∪ 𝐾 → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ∪ 𝐾 ) = 𝑋 ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ∪ 𝐾 ) = 𝑋 ) |
| 29 | pttop | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( ∏t ‘ 𝐹 ) ∈ Top ) | |
| 30 | 2 29 | eqeltrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐽 ∈ Top ) |
| 31 | 30 | 3adant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → 𝐽 ∈ Top ) |
| 32 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 33 | 31 32 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → 𝑋 ∈ 𝐽 ) |
| 34 | 28 33 | eqeltrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ∪ 𝐾 ) ∈ 𝐽 ) |
| 35 | elsni | ⊢ ( 𝑣 ∈ { ∪ 𝐾 } → 𝑣 = ∪ 𝐾 ) | |
| 36 | 35 | imaeq2d | ⊢ ( 𝑣 ∈ { ∪ 𝐾 } → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) = ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ∪ 𝐾 ) ) |
| 37 | 36 | eleq1d | ⊢ ( 𝑣 ∈ { ∪ 𝐾 } → ( ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ↔ ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ∪ 𝐾 ) ∈ 𝐽 ) ) |
| 38 | 34 37 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑣 ∈ { ∪ 𝐾 } → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) ) |
| 39 | 38 | ralrimiv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ∀ 𝑣 ∈ { ∪ 𝐾 } ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) |
| 40 | imaco | ⊢ ( ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ∘ ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) ) “ 𝑢 ) = ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| 41 | cnvco | ⊢ ◡ ( ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ) = ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ∘ ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) ) | |
| 42 | 25 | adantlr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ↾ 𝐵 ) ∈ ∪ 𝐾 ) |
| 43 | eqidd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ) | |
| 44 | eqidd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) = ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) ) | |
| 45 | fveq1 | ⊢ ( 𝑧 = ( 𝑥 ↾ 𝐵 ) → ( 𝑧 ‘ 𝑘 ) = ( ( 𝑥 ↾ 𝐵 ) ‘ 𝑘 ) ) | |
| 46 | 42 43 44 45 | fmptco | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 ↾ 𝐵 ) ‘ 𝑘 ) ) ) |
| 47 | fvres | ⊢ ( 𝑘 ∈ 𝐵 → ( ( 𝑥 ↾ 𝐵 ) ‘ 𝑘 ) = ( 𝑥 ‘ 𝑘 ) ) | |
| 48 | 47 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝑥 ↾ 𝐵 ) ‘ 𝑘 ) = ( 𝑥 ‘ 𝑘 ) ) |
| 49 | 48 | mpteq2dv | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 ↾ 𝐵 ) ‘ 𝑘 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) ) |
| 50 | 46 49 | eqtrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) ) |
| 51 | 50 | cnveqd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ◡ ( ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ) = ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) ) |
| 52 | 41 51 | eqtr3id | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ∘ ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) ) = ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) ) |
| 53 | 52 | imaeq1d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ∘ ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) ) “ 𝑢 ) = ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 54 | 40 53 | eqtr3id | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) = ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 55 | simpl1 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → 𝐴 ∈ 𝑉 ) | |
| 56 | simpl2 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → 𝐹 : 𝐴 ⟶ Top ) | |
| 57 | simpl3 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → 𝐵 ⊆ 𝐴 ) | |
| 58 | simprl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → 𝑘 ∈ 𝐵 ) | |
| 59 | 57 58 | sseldd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → 𝑘 ∈ 𝐴 ) |
| 60 | 1 2 | ptpjcn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 61 | 55 56 59 60 | syl3anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 62 | simprr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) | |
| 63 | cnima | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝑘 ) ) ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝐽 ) | |
| 64 | 61 62 63 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝐽 ) |
| 65 | 54 64 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ 𝐽 ) |
| 66 | imaeq2 | ⊢ ( 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) = ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) | |
| 67 | 66 | eleq1d | ⊢ ( 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) → ( ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ↔ ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ 𝐽 ) ) |
| 68 | 65 67 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) ) |
| 69 | 68 | rexlimdvva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) ) |
| 70 | 69 | alrimiv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ∀ 𝑣 ( ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) ) |
| 71 | eqid | ⊢ ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) = ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| 72 | 71 | rnmpo | ⊢ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) = { 𝑦 ∣ ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) } |
| 73 | 72 | raleqi | ⊢ ( ∀ 𝑣 ∈ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ↔ ∀ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) } ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) |
| 74 | 13 | rexeqdv | ⊢ ( 𝑘 ∈ 𝐵 → ( ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 75 | eqeq1 | ⊢ ( 𝑦 = 𝑣 → ( 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ↔ 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) | |
| 76 | 75 | rexbidv | ⊢ ( 𝑦 = 𝑣 → ( ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 77 | 74 76 | sylan9bbr | ⊢ ( ( 𝑦 = 𝑣 ∧ 𝑘 ∈ 𝐵 ) → ( ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 78 | 77 | rexbidva | ⊢ ( 𝑦 = 𝑣 → ( ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 79 | 78 | ralab | ⊢ ( ∀ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) } ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ↔ ∀ 𝑣 ( ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) ) |
| 80 | 73 79 | bitri | ⊢ ( ∀ 𝑣 ∈ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ↔ ∀ 𝑣 ( ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) ) |
| 81 | 70 80 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ∀ 𝑣 ∈ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) |
| 82 | ralunb | ⊢ ( ∀ 𝑣 ∈ ( { ∪ 𝐾 } ∪ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ↔ ( ∀ 𝑣 ∈ { ∪ 𝐾 } ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ∧ ∀ 𝑣 ∈ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) ) | |
| 83 | 39 81 82 | sylanbrc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ∀ 𝑣 ∈ ( { ∪ 𝐾 } ∪ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) |
| 84 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 85 | 31 84 | sylib | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 86 | snex | ⊢ { ∪ 𝐾 } ∈ V | |
| 87 | fvex | ⊢ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ∈ V | |
| 88 | 87 | abrexex | ⊢ { 𝑦 ∣ ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) } ∈ V |
| 89 | 88 | rgenw | ⊢ ∀ 𝑘 ∈ 𝐵 { 𝑦 ∣ ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) } ∈ V |
| 90 | abrexex2g | ⊢ ( ( 𝐵 ∈ V ∧ ∀ 𝑘 ∈ 𝐵 { 𝑦 ∣ ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) } ∈ V ) → { 𝑦 ∣ ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) } ∈ V ) | |
| 91 | 18 89 90 | sylancl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → { 𝑦 ∣ ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) } ∈ V ) |
| 92 | 72 91 | eqeltrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ V ) |
| 93 | unexg | ⊢ ( ( { ∪ 𝐾 } ∈ V ∧ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ V ) → ( { ∪ 𝐾 } ∪ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ∈ V ) | |
| 94 | 86 92 93 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( { ∪ 𝐾 } ∪ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ∈ V ) |
| 95 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 96 | 3 95 71 | ptval2 | ⊢ ( ( 𝐵 ∈ V ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ) → 𝐾 = ( topGen ‘ ( fi ‘ ( { ∪ 𝐾 } ∪ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ) |
| 97 | 18 20 96 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → 𝐾 = ( topGen ‘ ( fi ‘ ( { ∪ 𝐾 } ∪ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ) |
| 98 | pttop | ⊢ ( ( 𝐵 ∈ V ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ) → ( ∏t ‘ ( 𝐹 ↾ 𝐵 ) ) ∈ Top ) | |
| 99 | 18 20 98 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( ∏t ‘ ( 𝐹 ↾ 𝐵 ) ) ∈ Top ) |
| 100 | 3 99 | eqeltrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → 𝐾 ∈ Top ) |
| 101 | 95 | toptopon | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 102 | 100 101 | sylib | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 103 | 85 94 97 102 | subbascn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) : 𝑋 ⟶ ∪ 𝐾 ∧ ∀ 𝑣 ∈ ( { ∪ 𝐾 } ∪ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) ) ) |
| 104 | 26 83 103 | mpbir2and | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |