This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abrexex2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } ∈ 𝑊 ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑧 ∃ 𝑥 ∈ 𝐴 𝜑 | |
| 2 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 3 | nfs1v | ⊢ Ⅎ 𝑦 [ 𝑧 / 𝑦 ] 𝜑 | |
| 4 | 2 3 | nfrexw | ⊢ Ⅎ 𝑦 ∃ 𝑥 ∈ 𝐴 [ 𝑧 / 𝑦 ] 𝜑 |
| 5 | sbequ12 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) ) | |
| 6 | 5 | rexbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 7 | 1 4 6 | cbvabw | ⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 [ 𝑧 / 𝑦 ] 𝜑 } |
| 8 | df-clab | ⊢ ( 𝑧 ∈ { 𝑦 ∣ 𝜑 } ↔ [ 𝑧 / 𝑦 ] 𝜑 ) | |
| 9 | 8 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ { 𝑦 ∣ 𝜑 } ↔ ∃ 𝑥 ∈ 𝐴 [ 𝑧 / 𝑦 ] 𝜑 ) |
| 10 | 9 | abbii | ⊢ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ { 𝑦 ∣ 𝜑 } } = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 [ 𝑧 / 𝑦 ] 𝜑 } |
| 11 | 7 10 | eqtr4i | ⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ { 𝑦 ∣ 𝜑 } } |
| 12 | df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ { 𝑦 ∣ 𝜑 } } | |
| 13 | iunexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } ∈ 𝑊 ) → ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } ∈ V ) | |
| 14 | 12 13 | eqeltrrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } ∈ 𝑊 ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ { 𝑦 ∣ 𝜑 } } ∈ V ) |
| 15 | 11 14 | eqeltrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } ∈ 𝑊 ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } ∈ V ) |