This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law of converse over class composition. Theorem 26 of Suppes p. 64. (Contributed by NM, 19-Mar-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvco | ⊢ ◡ ( 𝐴 ∘ 𝐵 ) = ( ◡ 𝐵 ∘ ◡ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom | ⊢ ( ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ∃ 𝑧 ( 𝑧 𝐴 𝑦 ∧ 𝑥 𝐵 𝑧 ) ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 2 3 | brco | ⊢ ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ↔ ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 5 | vex | ⊢ 𝑧 ∈ V | |
| 6 | 3 5 | brcnv | ⊢ ( 𝑦 ◡ 𝐴 𝑧 ↔ 𝑧 𝐴 𝑦 ) |
| 7 | 5 2 | brcnv | ⊢ ( 𝑧 ◡ 𝐵 𝑥 ↔ 𝑥 𝐵 𝑧 ) |
| 8 | 6 7 | anbi12i | ⊢ ( ( 𝑦 ◡ 𝐴 𝑧 ∧ 𝑧 ◡ 𝐵 𝑥 ) ↔ ( 𝑧 𝐴 𝑦 ∧ 𝑥 𝐵 𝑧 ) ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑧 ( 𝑦 ◡ 𝐴 𝑧 ∧ 𝑧 ◡ 𝐵 𝑥 ) ↔ ∃ 𝑧 ( 𝑧 𝐴 𝑦 ∧ 𝑥 𝐵 𝑧 ) ) |
| 10 | 1 4 9 | 3bitr4i | ⊢ ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ↔ ∃ 𝑧 ( 𝑦 ◡ 𝐴 𝑧 ∧ 𝑧 ◡ 𝐵 𝑥 ) ) |
| 11 | 10 | opabbii | ⊢ { 〈 𝑦 , 𝑥 〉 ∣ 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 } = { 〈 𝑦 , 𝑥 〉 ∣ ∃ 𝑧 ( 𝑦 ◡ 𝐴 𝑧 ∧ 𝑧 ◡ 𝐵 𝑥 ) } |
| 12 | df-cnv | ⊢ ◡ ( 𝐴 ∘ 𝐵 ) = { 〈 𝑦 , 𝑥 〉 ∣ 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 } | |
| 13 | df-co | ⊢ ( ◡ 𝐵 ∘ ◡ 𝐴 ) = { 〈 𝑦 , 𝑥 〉 ∣ ∃ 𝑧 ( 𝑦 ◡ 𝐴 𝑧 ∧ 𝑧 ◡ 𝐵 𝑥 ) } | |
| 14 | 11 12 13 | 3eqtr4i | ⊢ ◡ ( 𝐴 ∘ 𝐵 ) = ( ◡ 𝐵 ∘ ◡ 𝐴 ) |