This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the product topology function. (Contributed by Mario Carneiro, 7-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptval2.1 | ⊢ 𝐽 = ( ∏t ‘ 𝐹 ) | |
| ptval2.2 | ⊢ 𝑋 = ∪ 𝐽 | ||
| ptval2.3 | ⊢ 𝐺 = ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) | ||
| Assertion | ptval2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐽 = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ran 𝐺 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptval2.1 | ⊢ 𝐽 = ( ∏t ‘ 𝐹 ) | |
| 2 | ptval2.2 | ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | ptval2.3 | ⊢ 𝐺 = ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| 4 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ Top → 𝐹 Fn 𝐴 ) | |
| 5 | eqid | ⊢ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } | |
| 6 | 5 | ptval | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ) → ( ∏t ‘ 𝐹 ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 7 | 1 6 | eqtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ) → 𝐽 = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 8 | 4 7 | sylan2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐽 = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 9 | eqid | ⊢ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) | |
| 10 | 5 9 | ptbasfi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } = ( fi ‘ ( { X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 11 | 1 | ptuni | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = ∪ 𝐽 ) |
| 12 | 11 2 | eqtr4di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = 𝑋 ) |
| 13 | 12 | sneqd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → { X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) } = { 𝑋 } ) |
| 14 | 12 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ 𝑘 ∈ 𝐴 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) → X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = 𝑋 ) |
| 15 | 14 | mpteq1d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ 𝑘 ∈ 𝐴 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 16 | 15 | cnveqd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ 𝑘 ∈ 𝐴 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) → ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) = ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 17 | 16 | imaeq1d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ 𝑘 ∈ 𝐴 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) → ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 18 | 17 | mpoeq3dva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) = ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 19 | 18 3 | eqtr4di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) = 𝐺 ) |
| 20 | 19 | rneqd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) = ran 𝐺 ) |
| 21 | 13 20 | uneq12d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( { X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) = ( { 𝑋 } ∪ ran 𝐺 ) ) |
| 22 | 21 | fveq2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( fi ‘ ( { X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) = ( fi ‘ ( { 𝑋 } ∪ ran 𝐺 ) ) ) |
| 23 | 10 22 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } = ( fi ‘ ( { 𝑋 } ∪ ran 𝐺 ) ) ) |
| 24 | 23 | fveq2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ran 𝐺 ) ) ) ) |
| 25 | 8 24 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐽 = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ran 𝐺 ) ) ) ) |