This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011) (Proof shortened by Mario Carneiro, 31-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resixp | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( 𝐹 ↾ 𝐵 ) ∈ X 𝑥 ∈ 𝐵 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resexg | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 → ( 𝐹 ↾ 𝐵 ) ∈ V ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( 𝐹 ↾ 𝐵 ) ∈ V ) |
| 3 | simpr | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) | |
| 4 | elixp2 | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) | |
| 5 | 3 4 | sylib | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 6 | 5 | simp2d | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → 𝐹 Fn 𝐴 ) |
| 7 | simpl | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → 𝐵 ⊆ 𝐴 ) | |
| 8 | fnssres | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐵 ) Fn 𝐵 ) | |
| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( 𝐹 ↾ 𝐵 ) Fn 𝐵 ) |
| 10 | 5 | simp3d | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) |
| 11 | ssralv | ⊢ ( 𝐵 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) | |
| 12 | 7 10 11 | sylc | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) |
| 13 | fvres | ⊢ ( 𝑥 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 14 | 13 | eleq1d | ⊢ ( 𝑥 ∈ 𝐵 → ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 15 | 14 | ralbiia | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) |
| 16 | 12 15 | sylibr | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ∈ 𝐶 ) |
| 17 | elixp2 | ⊢ ( ( 𝐹 ↾ 𝐵 ) ∈ X 𝑥 ∈ 𝐵 𝐶 ↔ ( ( 𝐹 ↾ 𝐵 ) ∈ V ∧ ( 𝐹 ↾ 𝐵 ) Fn 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ∈ 𝐶 ) ) | |
| 18 | 2 9 16 17 | syl3anbrc | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐶 ) → ( 𝐹 ↾ 𝐵 ) ∈ X 𝑥 ∈ 𝐵 𝐶 ) |