This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "tube lemma". If X is compact and there is an open set U containing the line X X. { A } , then there is a "tube" X X. u for some neighborhood u of A which is entirely contained within U . (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txtube.x | ⊢ 𝑋 = ∪ 𝑅 | |
| txtube.y | ⊢ 𝑌 = ∪ 𝑆 | ||
| txtube.r | ⊢ ( 𝜑 → 𝑅 ∈ Comp ) | ||
| txtube.s | ⊢ ( 𝜑 → 𝑆 ∈ Top ) | ||
| txtube.w | ⊢ ( 𝜑 → 𝑈 ∈ ( 𝑅 ×t 𝑆 ) ) | ||
| txtube.u | ⊢ ( 𝜑 → ( 𝑋 × { 𝐴 } ) ⊆ 𝑈 ) | ||
| txtube.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑌 ) | ||
| Assertion | txtube | ⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txtube.x | ⊢ 𝑋 = ∪ 𝑅 | |
| 2 | txtube.y | ⊢ 𝑌 = ∪ 𝑆 | |
| 3 | txtube.r | ⊢ ( 𝜑 → 𝑅 ∈ Comp ) | |
| 4 | txtube.s | ⊢ ( 𝜑 → 𝑆 ∈ Top ) | |
| 5 | txtube.w | ⊢ ( 𝜑 → 𝑈 ∈ ( 𝑅 ×t 𝑆 ) ) | |
| 6 | txtube.u | ⊢ ( 𝜑 → ( 𝑋 × { 𝐴 } ) ⊆ 𝑈 ) | |
| 7 | txtube.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑌 ) | |
| 8 | eleq1 | ⊢ ( 𝑦 = 〈 𝑥 , 𝐴 〉 → ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ↔ 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ) ) | |
| 9 | 8 | anbi1d | ⊢ ( 𝑦 = 〈 𝑥 , 𝐴 〉 → ( ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 10 | 9 | 2rexbidv | ⊢ ( 𝑦 = 〈 𝑥 , 𝐴 〉 → ( ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 11 | eltx | ⊢ ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Top ) → ( 𝑈 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑈 ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) | |
| 12 | 3 4 11 | syl2anc | ⊢ ( 𝜑 → ( 𝑈 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑈 ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 13 | 5 12 | mpbid | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑈 ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑈 ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) |
| 15 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑋 × { 𝐴 } ) ⊆ 𝑈 ) |
| 16 | id | ⊢ ( 𝑥 ∈ 𝑋 → 𝑥 ∈ 𝑋 ) | |
| 17 | snidg | ⊢ ( 𝐴 ∈ 𝑌 → 𝐴 ∈ { 𝐴 } ) | |
| 18 | 7 17 | syl | ⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 } ) |
| 19 | opelxpi | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ { 𝐴 } ) → 〈 𝑥 , 𝐴 〉 ∈ ( 𝑋 × { 𝐴 } ) ) | |
| 20 | 16 18 19 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 〈 𝑥 , 𝐴 〉 ∈ ( 𝑋 × { 𝐴 } ) ) |
| 21 | 15 20 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 〈 𝑥 , 𝐴 〉 ∈ 𝑈 ) |
| 22 | 10 14 21 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) |
| 23 | opelxp | ⊢ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ( 𝑥 ∈ 𝑢 ∧ 𝐴 ∈ 𝑣 ) ) | |
| 24 | 23 | anbi1i | ⊢ ( ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ( ( 𝑥 ∈ 𝑢 ∧ 𝐴 ∈ 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) |
| 25 | anass | ⊢ ( ( ( 𝑥 ∈ 𝑢 ∧ 𝐴 ∈ 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ( 𝑥 ∈ 𝑢 ∧ ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) | |
| 26 | 24 25 | bitri | ⊢ ( ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ( 𝑥 ∈ 𝑢 ∧ ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 27 | 26 | rexbii | ⊢ ( ∃ 𝑣 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ∃ 𝑣 ∈ 𝑆 ( 𝑥 ∈ 𝑢 ∧ ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 28 | r19.42v | ⊢ ( ∃ 𝑣 ∈ 𝑆 ( 𝑥 ∈ 𝑢 ∧ ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ↔ ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑣 ∈ 𝑆 ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) | |
| 29 | 27 28 | bitri | ⊢ ( ∃ 𝑣 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑣 ∈ 𝑆 ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 30 | 29 | rexbii | ⊢ ( ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ∃ 𝑢 ∈ 𝑅 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑣 ∈ 𝑆 ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 31 | 22 30 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑢 ∈ 𝑅 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑣 ∈ 𝑆 ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 32 | 31 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑅 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑣 ∈ 𝑆 ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) |
| 33 | eleq2 | ⊢ ( 𝑣 = ( 𝑓 ‘ 𝑢 ) → ( 𝐴 ∈ 𝑣 ↔ 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ) ) | |
| 34 | xpeq2 | ⊢ ( 𝑣 = ( 𝑓 ‘ 𝑢 ) → ( 𝑢 × 𝑣 ) = ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ) | |
| 35 | 34 | sseq1d | ⊢ ( 𝑣 = ( 𝑓 ‘ 𝑢 ) → ( ( 𝑢 × 𝑣 ) ⊆ 𝑈 ↔ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) |
| 36 | 33 35 | anbi12d | ⊢ ( 𝑣 = ( 𝑓 ‘ 𝑢 ) → ( ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ↔ ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) |
| 37 | 1 36 | cmpcovf | ⊢ ( ( 𝑅 ∈ Comp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑅 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑣 ∈ 𝑆 ( 𝐴 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑈 ) ) ) → ∃ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ( 𝑋 = ∪ 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) |
| 38 | 3 32 37 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ( 𝑋 = ∪ 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) |
| 39 | rint0 | ⊢ ( ran 𝑓 = ∅ → ( 𝑌 ∩ ∩ ran 𝑓 ) = 𝑌 ) | |
| 40 | 39 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 = ∅ ) → ( 𝑌 ∩ ∩ ran 𝑓 ) = 𝑌 ) |
| 41 | 2 | topopn | ⊢ ( 𝑆 ∈ Top → 𝑌 ∈ 𝑆 ) |
| 42 | 4 41 | syl | ⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
| 43 | 42 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 = ∅ ) → 𝑌 ∈ 𝑆 ) |
| 44 | 40 43 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 = ∅ ) → ( 𝑌 ∩ ∩ ran 𝑓 ) ∈ 𝑆 ) |
| 45 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → 𝑆 ∈ Top ) |
| 46 | simprrl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑓 : 𝑡 ⟶ 𝑆 ) | |
| 47 | 46 | frnd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ran 𝑓 ⊆ 𝑆 ) |
| 48 | 47 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ran 𝑓 ⊆ 𝑆 ) |
| 49 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ran 𝑓 ≠ ∅ ) | |
| 50 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) | |
| 51 | 50 | elin2d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑡 ∈ Fin ) |
| 52 | 46 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑓 Fn 𝑡 ) |
| 53 | dffn4 | ⊢ ( 𝑓 Fn 𝑡 ↔ 𝑓 : 𝑡 –onto→ ran 𝑓 ) | |
| 54 | 52 53 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑓 : 𝑡 –onto→ ran 𝑓 ) |
| 55 | fofi | ⊢ ( ( 𝑡 ∈ Fin ∧ 𝑓 : 𝑡 –onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin ) | |
| 56 | 51 54 55 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ran 𝑓 ∈ Fin ) |
| 57 | 56 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ran 𝑓 ∈ Fin ) |
| 58 | fiinopn | ⊢ ( 𝑆 ∈ Top → ( ( ran 𝑓 ⊆ 𝑆 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin ) → ∩ ran 𝑓 ∈ 𝑆 ) ) | |
| 59 | 58 | imp | ⊢ ( ( 𝑆 ∈ Top ∧ ( ran 𝑓 ⊆ 𝑆 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin ) ) → ∩ ran 𝑓 ∈ 𝑆 ) |
| 60 | 45 48 49 57 59 | syl13anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ∩ ran 𝑓 ∈ 𝑆 ) |
| 61 | elssuni | ⊢ ( ∩ ran 𝑓 ∈ 𝑆 → ∩ ran 𝑓 ⊆ ∪ 𝑆 ) | |
| 62 | 60 61 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ∩ ran 𝑓 ⊆ ∪ 𝑆 ) |
| 63 | 62 2 | sseqtrrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ∩ ran 𝑓 ⊆ 𝑌 ) |
| 64 | sseqin2 | ⊢ ( ∩ ran 𝑓 ⊆ 𝑌 ↔ ( 𝑌 ∩ ∩ ran 𝑓 ) = ∩ ran 𝑓 ) | |
| 65 | 63 64 | sylib | ⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ( 𝑌 ∩ ∩ ran 𝑓 ) = ∩ ran 𝑓 ) |
| 66 | 65 60 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) ∧ ran 𝑓 ≠ ∅ ) → ( 𝑌 ∩ ∩ ran 𝑓 ) ∈ 𝑆 ) |
| 67 | 44 66 | pm2.61dane | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ( 𝑌 ∩ ∩ ran 𝑓 ) ∈ 𝑆 ) |
| 68 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝐴 ∈ 𝑌 ) |
| 69 | simprrr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) | |
| 70 | simpl | ⊢ ( ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) → 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ) | |
| 71 | 70 | ralimi | ⊢ ( ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) → ∀ 𝑢 ∈ 𝑡 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ) |
| 72 | 69 71 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∀ 𝑢 ∈ 𝑡 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ) |
| 73 | eliin | ⊢ ( 𝐴 ∈ 𝑌 → ( 𝐴 ∈ ∩ 𝑢 ∈ 𝑡 ( 𝑓 ‘ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝑡 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ) ) | |
| 74 | 68 73 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ( 𝐴 ∈ ∩ 𝑢 ∈ 𝑡 ( 𝑓 ‘ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝑡 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ) ) |
| 75 | 72 74 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝐴 ∈ ∩ 𝑢 ∈ 𝑡 ( 𝑓 ‘ 𝑢 ) ) |
| 76 | fniinfv | ⊢ ( 𝑓 Fn 𝑡 → ∩ 𝑢 ∈ 𝑡 ( 𝑓 ‘ 𝑢 ) = ∩ ran 𝑓 ) | |
| 77 | 52 76 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∩ 𝑢 ∈ 𝑡 ( 𝑓 ‘ 𝑢 ) = ∩ ran 𝑓 ) |
| 78 | 75 77 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝐴 ∈ ∩ ran 𝑓 ) |
| 79 | 68 78 | elind | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝐴 ∈ ( 𝑌 ∩ ∩ ran 𝑓 ) ) |
| 80 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑋 = ∪ 𝑡 ) | |
| 81 | uniiun | ⊢ ∪ 𝑡 = ∪ 𝑢 ∈ 𝑡 𝑢 | |
| 82 | 80 81 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → 𝑋 = ∪ 𝑢 ∈ 𝑡 𝑢 ) |
| 83 | 82 | xpeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ( 𝑋 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) = ( ∪ 𝑢 ∈ 𝑡 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ) |
| 84 | xpiundir | ⊢ ( ∪ 𝑢 ∈ 𝑡 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) = ∪ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) | |
| 85 | 83 84 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ( 𝑋 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) = ∪ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ) |
| 86 | simpr | ⊢ ( ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) → ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) | |
| 87 | 86 | ralimi | ⊢ ( ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) → ∀ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) |
| 88 | 69 87 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∀ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) |
| 89 | inss2 | ⊢ ( 𝑌 ∩ ∩ ran 𝑓 ) ⊆ ∩ ran 𝑓 | |
| 90 | 76 | adantr | ⊢ ( ( 𝑓 Fn 𝑡 ∧ 𝑢 ∈ 𝑡 ) → ∩ 𝑢 ∈ 𝑡 ( 𝑓 ‘ 𝑢 ) = ∩ ran 𝑓 ) |
| 91 | iinss2 | ⊢ ( 𝑢 ∈ 𝑡 → ∩ 𝑢 ∈ 𝑡 ( 𝑓 ‘ 𝑢 ) ⊆ ( 𝑓 ‘ 𝑢 ) ) | |
| 92 | 91 | adantl | ⊢ ( ( 𝑓 Fn 𝑡 ∧ 𝑢 ∈ 𝑡 ) → ∩ 𝑢 ∈ 𝑡 ( 𝑓 ‘ 𝑢 ) ⊆ ( 𝑓 ‘ 𝑢 ) ) |
| 93 | 90 92 | eqsstrrd | ⊢ ( ( 𝑓 Fn 𝑡 ∧ 𝑢 ∈ 𝑡 ) → ∩ ran 𝑓 ⊆ ( 𝑓 ‘ 𝑢 ) ) |
| 94 | 89 93 | sstrid | ⊢ ( ( 𝑓 Fn 𝑡 ∧ 𝑢 ∈ 𝑡 ) → ( 𝑌 ∩ ∩ ran 𝑓 ) ⊆ ( 𝑓 ‘ 𝑢 ) ) |
| 95 | xpss2 | ⊢ ( ( 𝑌 ∩ ∩ ran 𝑓 ) ⊆ ( 𝑓 ‘ 𝑢 ) → ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ) | |
| 96 | sstr2 | ⊢ ( ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) → ( ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 → ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) ) | |
| 97 | 94 95 96 | 3syl | ⊢ ( ( 𝑓 Fn 𝑡 ∧ 𝑢 ∈ 𝑡 ) → ( ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 → ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) ) |
| 98 | 97 | ralimdva | ⊢ ( 𝑓 Fn 𝑡 → ( ∀ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 → ∀ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) ) |
| 99 | 52 88 98 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∀ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) |
| 100 | iunss | ⊢ ( ∪ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ↔ ∀ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) | |
| 101 | 99 100 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∪ 𝑢 ∈ 𝑡 ( 𝑢 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) |
| 102 | 85 101 | eqsstrd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ( 𝑋 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) |
| 103 | eleq2 | ⊢ ( 𝑢 = ( 𝑌 ∩ ∩ ran 𝑓 ) → ( 𝐴 ∈ 𝑢 ↔ 𝐴 ∈ ( 𝑌 ∩ ∩ ran 𝑓 ) ) ) | |
| 104 | xpeq2 | ⊢ ( 𝑢 = ( 𝑌 ∩ ∩ ran 𝑓 ) → ( 𝑋 × 𝑢 ) = ( 𝑋 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ) | |
| 105 | 104 | sseq1d | ⊢ ( 𝑢 = ( 𝑌 ∩ ∩ ran 𝑓 ) → ( ( 𝑋 × 𝑢 ) ⊆ 𝑈 ↔ ( 𝑋 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) ) |
| 106 | 103 105 | anbi12d | ⊢ ( 𝑢 = ( 𝑌 ∩ ∩ ran 𝑓 ) → ( ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ↔ ( 𝐴 ∈ ( 𝑌 ∩ ∩ ran 𝑓 ) ∧ ( 𝑋 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) ) ) |
| 107 | 106 | rspcev | ⊢ ( ( ( 𝑌 ∩ ∩ ran 𝑓 ) ∈ 𝑆 ∧ ( 𝐴 ∈ ( 𝑌 ∩ ∩ ran 𝑓 ) ∧ ( 𝑋 × ( 𝑌 ∩ ∩ ran 𝑓 ) ) ⊆ 𝑈 ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) |
| 108 | 67 79 102 107 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) |
| 109 | 108 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ 𝑋 = ∪ 𝑡 ) → ( ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) ) |
| 110 | 109 | exlimdv | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ 𝑋 = ∪ 𝑡 ) → ( ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) ) |
| 111 | 110 | expimpd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) → ( ( 𝑋 = ∪ 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) ) |
| 112 | 111 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ( 𝑋 = ∪ 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑆 ∧ ∀ 𝑢 ∈ 𝑡 ( 𝐴 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑢 × ( 𝑓 ‘ 𝑢 ) ) ⊆ 𝑈 ) ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) ) |
| 113 | 38 112 | mpd | ⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ 𝑈 ) ) |