This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The continuity predicate when the range is given by a subbasis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subbascn.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| subbascn.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| subbascn.3 | ⊢ ( 𝜑 → 𝐾 = ( topGen ‘ ( fi ‘ 𝐵 ) ) ) | ||
| subbascn.4 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| Assertion | subbascn | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subbascn.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | subbascn.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 3 | subbascn.3 | ⊢ ( 𝜑 → 𝐾 = ( topGen ‘ ( fi ‘ 𝐵 ) ) ) | |
| 4 | subbascn.4 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 5 | 1 3 4 | tgcn | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ( fi ‘ 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 6 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝐵 ∈ 𝑉 ) |
| 7 | ssfii | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ⊆ ( fi ‘ 𝐵 ) ) | |
| 8 | ssralv | ⊢ ( 𝐵 ⊆ ( fi ‘ 𝐵 ) → ( ∀ 𝑦 ∈ ( fi ‘ 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) | |
| 9 | 6 7 8 | 3syl | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ ( fi ‘ 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 10 | vex | ⊢ 𝑥 ∈ V | |
| 11 | elfi | ⊢ ( ( 𝑥 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( 𝑥 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑥 = ∩ 𝑧 ) ) | |
| 12 | 10 6 11 | sylancr | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝑥 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑥 = ∩ 𝑧 ) ) |
| 13 | simpr2 | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑥 = ∩ 𝑧 ) | |
| 14 | 13 | imaeq2d | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ ∩ 𝑧 ) ) |
| 15 | ffun | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → Fun 𝐹 ) | |
| 16 | 15 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → Fun 𝐹 ) |
| 17 | 13 10 | eqeltrrdi | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ∩ 𝑧 ∈ V ) |
| 18 | intex | ⊢ ( 𝑧 ≠ ∅ ↔ ∩ 𝑧 ∈ V ) | |
| 19 | 17 18 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑧 ≠ ∅ ) |
| 20 | intpreima | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ≠ ∅ ) → ( ◡ 𝐹 “ ∩ 𝑧 ) = ∩ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ) | |
| 21 | 16 19 20 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ ∩ 𝑧 ) = ∩ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ) |
| 22 | 14 21 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑥 ) = ∩ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ) |
| 23 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 24 | 1 23 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝐽 ∈ Top ) |
| 26 | simpr1 | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ) | |
| 27 | 26 | elin2d | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑧 ∈ Fin ) |
| 28 | 26 | elin1d | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑧 ∈ 𝒫 𝐵 ) |
| 29 | 28 | elpwid | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑧 ⊆ 𝐵 ) |
| 30 | simpr3 | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) | |
| 31 | ssralv | ⊢ ( 𝑧 ⊆ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) | |
| 32 | 29 30 31 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ∀ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
| 33 | iinopn | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑧 ∈ Fin ∧ 𝑧 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ∩ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) | |
| 34 | 25 27 19 32 33 | syl13anc | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ∩ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
| 35 | 22 34 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑥 = ∩ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
| 36 | 35 | 3exp2 | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) → ( 𝑥 = ∩ 𝑧 → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) ) |
| 37 | 36 | rexlimdv | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∃ 𝑧 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑥 = ∩ 𝑧 → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 38 | 12 37 | sylbid | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝑥 ∈ ( fi ‘ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 39 | 38 | com23 | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( 𝑥 ∈ ( fi ‘ 𝐵 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 40 | 39 | ralrimdv | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑥 ∈ ( fi ‘ 𝐵 ) ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) |
| 41 | imaeq2 | ⊢ ( 𝑦 = 𝑥 → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ 𝐹 “ 𝑥 ) ) | |
| 42 | 41 | eleq1d | ⊢ ( 𝑦 = 𝑥 → ( ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) |
| 43 | 42 | cbvralvw | ⊢ ( ∀ 𝑦 ∈ ( fi ‘ 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ ( fi ‘ 𝐵 ) ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
| 44 | 40 43 | imbitrrdi | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑦 ∈ ( fi ‘ 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 45 | 9 44 | impbid | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ ( fi ‘ 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ↔ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 46 | 45 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ( fi ‘ 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 47 | 5 46 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |