This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ptcmp . (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptcmp.1 | ⊢ 𝑆 = ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| ptcmp.2 | ⊢ 𝑋 = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) | ||
| ptcmp.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| ptcmp.4 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Comp ) | ||
| ptcmp.5 | ⊢ ( 𝜑 → 𝑋 ∈ ( UFL ∩ dom card ) ) | ||
| ptcmplem2.5 | ⊢ ( 𝜑 → 𝑈 ⊆ ran 𝑆 ) | ||
| ptcmplem2.6 | ⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) | ||
| ptcmplem2.7 | ⊢ ( 𝜑 → ¬ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 = ∪ 𝑧 ) | ||
| ptcmplem3.8 | ⊢ 𝐾 = { 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∣ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝑈 } | ||
| Assertion | ptcmplem3 | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcmp.1 | ⊢ 𝑆 = ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| 2 | ptcmp.2 | ⊢ 𝑋 = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) | |
| 3 | ptcmp.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 4 | ptcmp.4 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Comp ) | |
| 5 | ptcmp.5 | ⊢ ( 𝜑 → 𝑋 ∈ ( UFL ∩ dom card ) ) | |
| 6 | ptcmplem2.5 | ⊢ ( 𝜑 → 𝑈 ⊆ ran 𝑆 ) | |
| 7 | ptcmplem2.6 | ⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) | |
| 8 | ptcmplem2.7 | ⊢ ( 𝜑 → ¬ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 = ∪ 𝑧 ) | |
| 9 | ptcmplem3.8 | ⊢ 𝐾 = { 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∣ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝑈 } | |
| 10 | rabexg | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∈ V ) | |
| 11 | 3 10 | syl | ⊢ ( 𝜑 → { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∈ V ) |
| 12 | 1 2 3 4 5 6 7 8 | ptcmplem2 | ⊢ ( 𝜑 → ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ∈ dom card ) |
| 13 | eldifi | ⊢ ( 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → 𝑦 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ V ∧ 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) → 𝑦 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 15 | 14 | rabssdv | ⊢ ( 𝜑 → { 𝑦 ∈ V ∣ 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) } ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 16 | 15 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } { 𝑦 ∈ V ∣ 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) } ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 17 | ss2iun | ⊢ ( ∀ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } { 𝑦 ∈ V ∣ 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) } ⊆ ∪ ( 𝐹 ‘ 𝑘 ) → ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } { 𝑦 ∈ V ∣ 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) } ⊆ ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } { 𝑦 ∈ V ∣ 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) } ⊆ ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 19 | ssnum | ⊢ ( ( ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ∈ dom card ∧ ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } { 𝑦 ∈ V ∣ 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) } ⊆ ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ) → ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } { 𝑦 ∈ V ∣ 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) } ∈ dom card ) | |
| 20 | 12 18 19 | syl2anc | ⊢ ( 𝜑 → ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } { 𝑦 ∈ V ∣ 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) } ∈ dom card ) |
| 21 | elrabi | ⊢ ( 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } → 𝑘 ∈ 𝐴 ) | |
| 22 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
| 23 | ssdif0 | ⊢ ( ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ↔ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) = ∅ ) | |
| 24 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ Comp ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) → ( 𝐹 ‘ 𝑘 ) ∈ Comp ) |
| 26 | 9 | ssrab3 | ⊢ 𝐾 ⊆ ( 𝐹 ‘ 𝑘 ) |
| 27 | 26 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) → 𝐾 ⊆ ( 𝐹 ‘ 𝑘 ) ) |
| 28 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) → ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) | |
| 29 | uniss | ⊢ ( 𝐾 ⊆ ( 𝐹 ‘ 𝑘 ) → ∪ 𝐾 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 30 | 26 29 | mp1i | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) → ∪ 𝐾 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 31 | 28 30 | eqssd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) → ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐾 ) |
| 32 | eqid | ⊢ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) | |
| 33 | 32 | cmpcov | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ Comp ∧ 𝐾 ⊆ ( 𝐹 ‘ 𝑘 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐾 ) → ∃ 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) |
| 34 | 25 27 31 33 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) → ∃ 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) |
| 35 | elfpw | ⊢ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ↔ ( 𝑡 ⊆ 𝐾 ∧ 𝑡 ∈ Fin ) ) | |
| 36 | 35 | simplbi | ⊢ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) → 𝑡 ⊆ 𝐾 ) |
| 37 | 36 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) → 𝑡 ⊆ 𝐾 ) |
| 38 | 37 | sselda | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) ∧ 𝑥 ∈ 𝑡 ) → 𝑥 ∈ 𝐾 ) |
| 39 | imaeq2 | ⊢ ( 𝑢 = 𝑥 → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) | |
| 40 | 39 | eleq1d | ⊢ ( 𝑢 = 𝑥 → ( ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝑈 ↔ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ∈ 𝑈 ) ) |
| 41 | 40 9 | elrab2 | ⊢ ( 𝑥 ∈ 𝐾 ↔ ( 𝑥 ∈ ( 𝐹 ‘ 𝑘 ) ∧ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ∈ 𝑈 ) ) |
| 42 | 41 | simprbi | ⊢ ( 𝑥 ∈ 𝐾 → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ∈ 𝑈 ) |
| 43 | 38 42 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) ∧ 𝑥 ∈ 𝑡 ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ∈ 𝑈 ) |
| 44 | 43 | fmpttd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) → ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) : 𝑡 ⟶ 𝑈 ) |
| 45 | 44 | frnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) → ran ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) ⊆ 𝑈 ) |
| 46 | 35 | simprbi | ⊢ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) → 𝑡 ∈ Fin ) |
| 47 | 46 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) → 𝑡 ∈ Fin ) |
| 48 | eqid | ⊢ ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) = ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) | |
| 49 | 48 | rnmpt | ⊢ ran ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) = { 𝑓 ∣ ∃ 𝑥 ∈ 𝑡 𝑓 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) } |
| 50 | abrexfi | ⊢ ( 𝑡 ∈ Fin → { 𝑓 ∣ ∃ 𝑥 ∈ 𝑡 𝑓 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) } ∈ Fin ) | |
| 51 | 49 50 | eqeltrid | ⊢ ( 𝑡 ∈ Fin → ran ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) ∈ Fin ) |
| 52 | 47 51 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) → ran ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) ∈ Fin ) |
| 53 | elfpw | ⊢ ( ran ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) ∈ ( 𝒫 𝑈 ∩ Fin ) ↔ ( ran ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) ⊆ 𝑈 ∧ ran ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) ∈ Fin ) ) | |
| 54 | 45 52 53 | sylanbrc | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) → ran ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) ∈ ( 𝒫 𝑈 ∩ Fin ) ) |
| 55 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑘 ) ) | |
| 56 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 57 | 56 | unieqd | ⊢ ( 𝑛 = 𝑘 → ∪ ( 𝐹 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 58 | 55 57 | eleq12d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ↔ ( 𝑓 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 59 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) ∧ 𝑓 ∈ 𝑋 ) → 𝑓 ∈ 𝑋 ) | |
| 60 | 59 2 | eleqtrdi | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) ∧ 𝑓 ∈ 𝑋 ) → 𝑓 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 61 | vex | ⊢ 𝑓 ∈ V | |
| 62 | 61 | elixp | ⊢ ( 𝑓 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑛 ∈ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) ) |
| 63 | 62 | simprbi | ⊢ ( 𝑓 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 64 | 60 63 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) ∧ 𝑓 ∈ 𝑋 ) → ∀ 𝑛 ∈ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 65 | simp-4r | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) ∧ 𝑓 ∈ 𝑋 ) → 𝑘 ∈ 𝐴 ) | |
| 66 | 58 64 65 | rspcdva | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) ∧ 𝑓 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 67 | simplrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) ∧ 𝑓 ∈ 𝑋 ) → ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) | |
| 68 | 66 67 | eleqtrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) ∧ 𝑓 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝑡 ) |
| 69 | eluni2 | ⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝑡 ↔ ∃ 𝑥 ∈ 𝑡 ( 𝑓 ‘ 𝑘 ) ∈ 𝑥 ) | |
| 70 | 68 69 | sylib | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) ∧ 𝑓 ∈ 𝑋 ) → ∃ 𝑥 ∈ 𝑡 ( 𝑓 ‘ 𝑘 ) ∈ 𝑥 ) |
| 71 | fveq1 | ⊢ ( 𝑤 = 𝑓 → ( 𝑤 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) | |
| 72 | 71 | eleq1d | ⊢ ( 𝑤 = 𝑓 → ( ( 𝑤 ‘ 𝑘 ) ∈ 𝑥 ↔ ( 𝑓 ‘ 𝑘 ) ∈ 𝑥 ) ) |
| 73 | eqid | ⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) | |
| 74 | 73 | mptpreima | ⊢ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) = { 𝑤 ∈ 𝑋 ∣ ( 𝑤 ‘ 𝑘 ) ∈ 𝑥 } |
| 75 | 72 74 | elrab2 | ⊢ ( 𝑓 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ↔ ( 𝑓 ∈ 𝑋 ∧ ( 𝑓 ‘ 𝑘 ) ∈ 𝑥 ) ) |
| 76 | 75 | baib | ⊢ ( 𝑓 ∈ 𝑋 → ( 𝑓 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ↔ ( 𝑓 ‘ 𝑘 ) ∈ 𝑥 ) ) |
| 77 | 76 | ad2antlr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑡 ) → ( 𝑓 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ↔ ( 𝑓 ‘ 𝑘 ) ∈ 𝑥 ) ) |
| 78 | 77 | rexbidva | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) ∧ 𝑓 ∈ 𝑋 ) → ( ∃ 𝑥 ∈ 𝑡 𝑓 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝑡 ( 𝑓 ‘ 𝑘 ) ∈ 𝑥 ) ) |
| 79 | 70 78 | mpbird | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) ∧ 𝑓 ∈ 𝑋 ) → ∃ 𝑥 ∈ 𝑡 𝑓 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) |
| 80 | eliun | ⊢ ( 𝑓 ∈ ∪ 𝑥 ∈ 𝑡 ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝑡 𝑓 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) | |
| 81 | 79 80 | sylibr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) ∧ 𝑓 ∈ 𝑋 ) → 𝑓 ∈ ∪ 𝑥 ∈ 𝑡 ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) |
| 82 | 81 | ex | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) → ( 𝑓 ∈ 𝑋 → 𝑓 ∈ ∪ 𝑥 ∈ 𝑡 ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) ) |
| 83 | 82 | ssrdv | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) → 𝑋 ⊆ ∪ 𝑥 ∈ 𝑡 ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) |
| 84 | 43 | ralrimiva | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) → ∀ 𝑥 ∈ 𝑡 ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ∈ 𝑈 ) |
| 85 | dfiun2g | ⊢ ( ∀ 𝑥 ∈ 𝑡 ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ∈ 𝑈 → ∪ 𝑥 ∈ 𝑡 ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ 𝑡 𝑓 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) } ) | |
| 86 | 84 85 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) → ∪ 𝑥 ∈ 𝑡 ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ 𝑡 𝑓 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) } ) |
| 87 | 49 | unieqi | ⊢ ∪ ran ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ 𝑡 𝑓 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) } |
| 88 | 86 87 | eqtr4di | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) → ∪ 𝑥 ∈ 𝑡 ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) = ∪ ran ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) ) |
| 89 | 83 88 | sseqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) → 𝑋 ⊆ ∪ ran ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) ) |
| 90 | 45 | unissd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) → ∪ ran ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) ⊆ ∪ 𝑈 ) |
| 91 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) → 𝑋 = ∪ 𝑈 ) |
| 92 | 90 91 | sseqtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) → ∪ ran ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) ⊆ 𝑋 ) |
| 93 | 89 92 | eqssd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) → 𝑋 = ∪ ran ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) ) |
| 94 | unieq | ⊢ ( 𝑧 = ran ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) → ∪ 𝑧 = ∪ ran ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) ) | |
| 95 | 94 | rspceeqv | ⊢ ( ( ran ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ 𝑋 = ∪ ran ( 𝑥 ∈ 𝑡 ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑥 ) ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
| 96 | 54 93 95 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) ∧ ( 𝑡 ∈ ( 𝒫 𝐾 ∩ Fin ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝑡 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
| 97 | 34 96 | rexlimddv | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 ) → ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
| 98 | 97 | ex | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐾 → ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
| 99 | 23 98 | biimtrrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) = ∅ → ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
| 100 | 22 99 | mtod | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) = ∅ ) |
| 101 | neq0 | ⊢ ( ¬ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) = ∅ ↔ ∃ 𝑦 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) | |
| 102 | 100 101 | sylib | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ∃ 𝑦 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) |
| 103 | rexv | ⊢ ( ∃ 𝑦 ∈ V 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ↔ ∃ 𝑦 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) | |
| 104 | 102 103 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ∃ 𝑦 ∈ V 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) |
| 105 | 21 104 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ) → ∃ 𝑦 ∈ V 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) |
| 106 | 105 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∃ 𝑦 ∈ V 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) |
| 107 | eleq1 | ⊢ ( 𝑦 = ( 𝑔 ‘ 𝑘 ) → ( 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ↔ ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) | |
| 108 | 107 | ac6num | ⊢ ( ( { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∈ V ∧ ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } { 𝑦 ∈ V ∣ 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) } ∈ dom card ∧ ∀ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∃ 𝑦 ∈ V 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) → ∃ 𝑔 ( 𝑔 : { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⟶ V ∧ ∀ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 109 | 11 20 106 108 | syl3anc | ⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⟶ V ∧ ∀ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 110 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⟶ V ∧ ∀ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → 𝐴 ∈ 𝑉 ) |
| 111 | 110 | mptexd | ⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⟶ V ∧ ∀ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) ∈ V ) |
| 112 | fvex | ⊢ ( 𝐹 ‘ 𝑚 ) ∈ V | |
| 113 | 112 | uniex | ⊢ ∪ ( 𝐹 ‘ 𝑚 ) ∈ V |
| 114 | 113 | uniex | ⊢ ∪ ∪ ( 𝐹 ‘ 𝑚 ) ∈ V |
| 115 | fvex | ⊢ ( 𝑔 ‘ 𝑚 ) ∈ V | |
| 116 | 114 115 | ifex | ⊢ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ∈ V |
| 117 | 116 | rgenw | ⊢ ∀ 𝑚 ∈ 𝐴 if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ∈ V |
| 118 | eqid | ⊢ ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) | |
| 119 | 118 | fnmpt | ⊢ ( ∀ 𝑚 ∈ 𝐴 if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ∈ V → ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) Fn 𝐴 ) |
| 120 | 117 119 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⟶ V ∧ ∀ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) Fn 𝐴 ) |
| 121 | 57 | breq1d | ⊢ ( 𝑛 = 𝑘 → ( ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o ↔ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) |
| 122 | 121 | notbid | ⊢ ( 𝑛 = 𝑘 → ( ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o ↔ ¬ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) |
| 123 | 122 | ralrab | ⊢ ( ∀ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ↔ ∀ 𝑘 ∈ 𝐴 ( ¬ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o → ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 124 | iftrue | ⊢ ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o → if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) = ∪ ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 125 | 124 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑔 : { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⟶ V ) ∧ ( 𝑘 ∈ 𝐴 ∧ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) → if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) = ∪ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 126 | 102 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) → ∃ 𝑦 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) |
| 127 | 13 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) ∧ 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) → 𝑦 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 128 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) ∧ 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) → ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) | |
| 129 | en1b | ⊢ ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ↔ ∪ ( 𝐹 ‘ 𝑘 ) = { ∪ ∪ ( 𝐹 ‘ 𝑘 ) } ) | |
| 130 | 128 129 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) ∧ 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) → ∪ ( 𝐹 ‘ 𝑘 ) = { ∪ ∪ ( 𝐹 ‘ 𝑘 ) } ) |
| 131 | 127 130 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) ∧ 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) → 𝑦 ∈ { ∪ ∪ ( 𝐹 ‘ 𝑘 ) } ) |
| 132 | elsni | ⊢ ( 𝑦 ∈ { ∪ ∪ ( 𝐹 ‘ 𝑘 ) } → 𝑦 = ∪ ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 133 | 131 132 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) ∧ 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) → 𝑦 = ∪ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 134 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) ∧ 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) → 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) | |
| 135 | 133 134 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) ∧ 𝑦 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) → ∪ ∪ ( 𝐹 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) |
| 136 | 126 135 | exlimddv | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) → ∪ ∪ ( 𝐹 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) |
| 137 | 136 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑔 : { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⟶ V ) ∧ ( 𝑘 ∈ 𝐴 ∧ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) → ∪ ∪ ( 𝐹 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) |
| 138 | 125 137 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑔 : { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⟶ V ) ∧ ( 𝑘 ∈ 𝐴 ∧ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) → if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) |
| 139 | 138 | a1d | ⊢ ( ( ( 𝜑 ∧ 𝑔 : { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⟶ V ) ∧ ( 𝑘 ∈ 𝐴 ∧ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) → ( ( ¬ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o → ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) → if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 140 | 139 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑔 : { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⟶ V ) ∧ 𝑘 ∈ 𝐴 ) → ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o → ( ( ¬ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o → ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) → if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ) |
| 141 | pm2.27 | ⊢ ( ¬ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o → ( ( ¬ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o → ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) → ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) | |
| 142 | iffalse | ⊢ ( ¬ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o → if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) = ( 𝑔 ‘ 𝑘 ) ) | |
| 143 | 142 | eleq1d | ⊢ ( ¬ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o → ( if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ↔ ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 144 | 141 143 | sylibrd | ⊢ ( ¬ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o → ( ( ¬ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o → ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) → if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 145 | 140 144 | pm2.61d1 | ⊢ ( ( ( 𝜑 ∧ 𝑔 : { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⟶ V ) ∧ 𝑘 ∈ 𝐴 ) → ( ( ¬ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o → ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) → if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 146 | 145 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝑔 : { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⟶ V ) → ( ∀ 𝑘 ∈ 𝐴 ( ¬ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o → ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) → ∀ 𝑘 ∈ 𝐴 if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 147 | 123 146 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑔 : { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⟶ V ) → ( ∀ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ∀ 𝑘 ∈ 𝐴 if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 148 | 147 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⟶ V ∧ ∀ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → ∀ 𝑘 ∈ 𝐴 if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) |
| 149 | fneq1 | ⊢ ( 𝑓 = ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) → ( 𝑓 Fn 𝐴 ↔ ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) Fn 𝐴 ) ) | |
| 150 | fveq1 | ⊢ ( 𝑓 = ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) → ( 𝑓 ‘ 𝑘 ) = ( ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ) | |
| 151 | fveq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 152 | 151 | unieqd | ⊢ ( 𝑚 = 𝑘 → ∪ ( 𝐹 ‘ 𝑚 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 153 | 152 | breq1d | ⊢ ( 𝑚 = 𝑘 → ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o ↔ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) |
| 154 | 152 | unieqd | ⊢ ( 𝑚 = 𝑘 → ∪ ∪ ( 𝐹 ‘ 𝑚 ) = ∪ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 155 | fveq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝑔 ‘ 𝑚 ) = ( 𝑔 ‘ 𝑘 ) ) | |
| 156 | 153 154 155 | ifbieq12d | ⊢ ( 𝑚 = 𝑘 → if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) = if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) ) |
| 157 | fvex | ⊢ ( 𝐹 ‘ 𝑘 ) ∈ V | |
| 158 | 157 | uniex | ⊢ ∪ ( 𝐹 ‘ 𝑘 ) ∈ V |
| 159 | 158 | uniex | ⊢ ∪ ∪ ( 𝐹 ‘ 𝑘 ) ∈ V |
| 160 | fvex | ⊢ ( 𝑔 ‘ 𝑘 ) ∈ V | |
| 161 | 159 160 | ifex | ⊢ if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) ∈ V |
| 162 | 156 118 161 | fvmpt | ⊢ ( 𝑘 ∈ 𝐴 → ( ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) ) |
| 163 | 150 162 | sylan9eq | ⊢ ( ( 𝑓 = ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑘 ) = if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) ) |
| 164 | 163 | eleq1d | ⊢ ( ( 𝑓 = ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ↔ if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 165 | 164 | ralbidva | ⊢ ( 𝑓 = ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ↔ ∀ 𝑘 ∈ 𝐴 if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 166 | 149 165 | anbi12d | ⊢ ( 𝑓 = ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) → ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ↔ ( ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ) |
| 167 | 166 | spcegv | ⊢ ( ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) ∈ V → ( ( ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ) |
| 168 | 167 | 3impib | ⊢ ( ( ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) ∈ V ∧ ( 𝑚 ∈ 𝐴 ↦ if ( ∪ ( 𝐹 ‘ 𝑚 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑚 ) , ( 𝑔 ‘ 𝑚 ) ) ) Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 if ( ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o , ∪ ∪ ( 𝐹 ‘ 𝑘 ) , ( 𝑔 ‘ 𝑘 ) ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 169 | 111 120 148 168 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑔 : { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⟶ V ∧ ∀ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ( 𝑔 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 170 | 109 169 | exlimddv | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |