This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ptcmp . (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptcmp.1 | ⊢ 𝑆 = ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| ptcmp.2 | ⊢ 𝑋 = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) | ||
| ptcmp.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| ptcmp.4 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Comp ) | ||
| ptcmp.5 | ⊢ ( 𝜑 → 𝑋 ∈ ( UFL ∩ dom card ) ) | ||
| ptcmplem2.5 | ⊢ ( 𝜑 → 𝑈 ⊆ ran 𝑆 ) | ||
| ptcmplem2.6 | ⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) | ||
| ptcmplem2.7 | ⊢ ( 𝜑 → ¬ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 = ∪ 𝑧 ) | ||
| Assertion | ptcmplem2 | ⊢ ( 𝜑 → ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ∈ dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcmp.1 | ⊢ 𝑆 = ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| 2 | ptcmp.2 | ⊢ 𝑋 = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) | |
| 3 | ptcmp.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 4 | ptcmp.4 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Comp ) | |
| 5 | ptcmp.5 | ⊢ ( 𝜑 → 𝑋 ∈ ( UFL ∩ dom card ) ) | |
| 6 | ptcmplem2.5 | ⊢ ( 𝜑 → 𝑈 ⊆ ran 𝑆 ) | |
| 7 | ptcmplem2.6 | ⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) | |
| 8 | ptcmplem2.7 | ⊢ ( 𝜑 → ¬ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 = ∪ 𝑧 ) | |
| 9 | 0ss | ⊢ ∅ ⊆ 𝑈 | |
| 10 | 0fi | ⊢ ∅ ∈ Fin | |
| 11 | elfpw | ⊢ ( ∅ ∈ ( 𝒫 𝑈 ∩ Fin ) ↔ ( ∅ ⊆ 𝑈 ∧ ∅ ∈ Fin ) ) | |
| 12 | 9 10 11 | mpbir2an | ⊢ ∅ ∈ ( 𝒫 𝑈 ∩ Fin ) |
| 13 | unieq | ⊢ ( 𝑧 = ∅ → ∪ 𝑧 = ∪ ∅ ) | |
| 14 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 15 | 13 14 | eqtrdi | ⊢ ( 𝑧 = ∅ → ∪ 𝑧 = ∅ ) |
| 16 | 15 | rspceeqv | ⊢ ( ( ∅ ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ 𝑋 = ∅ ) → ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
| 17 | 12 16 | mpan | ⊢ ( 𝑋 = ∅ → ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
| 18 | 17 | necon3bi | ⊢ ( ¬ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 = ∪ 𝑧 → 𝑋 ≠ ∅ ) |
| 19 | 8 18 | syl | ⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 20 | n0 | ⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ 𝑋 ) | |
| 21 | 19 20 | sylib | ⊢ ( 𝜑 → ∃ 𝑓 𝑓 ∈ 𝑋 ) |
| 22 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 23 | 22 | unieqd | ⊢ ( 𝑛 = 𝑘 → ∪ ( 𝐹 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 24 | 23 | cbvixpv | ⊢ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) |
| 25 | 2 24 | eqtri | ⊢ 𝑋 = X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) |
| 26 | 5 | elin2d | ⊢ ( 𝜑 → 𝑋 ∈ dom card ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → 𝑋 ∈ dom card ) |
| 28 | 25 27 | eqeltrrid | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∈ dom card ) |
| 29 | ssrab2 | ⊢ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⊆ 𝐴 | |
| 30 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → 𝑋 ≠ ∅ ) |
| 31 | 25 30 | eqnetrrid | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ≠ ∅ ) |
| 32 | eqid | ⊢ ( 𝑔 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑔 ↾ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ) ) = ( 𝑔 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑔 ↾ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ) ) | |
| 33 | 32 | resixpfo | ⊢ ( ( { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⊆ 𝐴 ∧ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ≠ ∅ ) → ( 𝑔 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑔 ↾ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ) ) : X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) –onto→ X 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 34 | 29 31 33 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ( 𝑔 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑔 ↾ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ) ) : X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) –onto→ X 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 35 | fonum | ⊢ ( ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∈ dom card ∧ ( 𝑔 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑔 ↾ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ) ) : X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) –onto→ X 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ) → X 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ∈ dom card ) | |
| 36 | 28 34 35 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → X 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ∈ dom card ) |
| 37 | vex | ⊢ 𝑔 ∈ V | |
| 38 | difexg | ⊢ ( 𝑔 ∈ V → ( 𝑔 ∖ 𝑓 ) ∈ V ) | |
| 39 | 37 38 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ( 𝑔 ∖ 𝑓 ) ∈ V ) |
| 40 | dmexg | ⊢ ( ( 𝑔 ∖ 𝑓 ) ∈ V → dom ( 𝑔 ∖ 𝑓 ) ∈ V ) | |
| 41 | uniexg | ⊢ ( dom ( 𝑔 ∖ 𝑓 ) ∈ V → ∪ dom ( 𝑔 ∖ 𝑓 ) ∈ V ) | |
| 42 | 39 40 41 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ∪ dom ( 𝑔 ∖ 𝑓 ) ∈ V ) |
| 43 | 42 | ralrimivw | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ∀ 𝑔 ∈ 𝑋 ∪ dom ( 𝑔 ∖ 𝑓 ) ∈ V ) |
| 44 | eqid | ⊢ ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) = ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) | |
| 45 | 44 | fnmpt | ⊢ ( ∀ 𝑔 ∈ 𝑋 ∪ dom ( 𝑔 ∖ 𝑓 ) ∈ V → ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) Fn 𝑋 ) |
| 46 | 43 45 | syl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) Fn 𝑋 ) |
| 47 | dffn4 | ⊢ ( ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) Fn 𝑋 ↔ ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) : 𝑋 –onto→ ran ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) ) | |
| 48 | 46 47 | sylib | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) : 𝑋 –onto→ ran ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) ) |
| 49 | fonum | ⊢ ( ( 𝑋 ∈ dom card ∧ ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) : 𝑋 –onto→ ran ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) ) → ran ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) ∈ dom card ) | |
| 50 | 27 48 49 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ran ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) ∈ dom card ) |
| 51 | ssdif0 | ⊢ ( ∪ ( 𝐹 ‘ 𝑘 ) ⊆ { ( 𝑓 ‘ 𝑘 ) } ↔ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) = ∅ ) | |
| 52 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ { ( 𝑓 ‘ 𝑘 ) } ) → ∪ ( 𝐹 ‘ 𝑘 ) ⊆ { ( 𝑓 ‘ 𝑘 ) } ) | |
| 53 | simpr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → 𝑓 ∈ 𝑋 ) | |
| 54 | 53 25 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → 𝑓 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 55 | vex | ⊢ 𝑓 ∈ V | |
| 56 | 55 | elixp | ⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 57 | 56 | simprbi | ⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 58 | 54 57 | syl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 59 | 58 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 60 | 59 | snssd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → { ( 𝑓 ‘ 𝑘 ) } ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 61 | 60 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ { ( 𝑓 ‘ 𝑘 ) } ) → { ( 𝑓 ‘ 𝑘 ) } ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 62 | 52 61 | eqssd | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ { ( 𝑓 ‘ 𝑘 ) } ) → ∪ ( 𝐹 ‘ 𝑘 ) = { ( 𝑓 ‘ 𝑘 ) } ) |
| 63 | fvex | ⊢ ( 𝑓 ‘ 𝑘 ) ∈ V | |
| 64 | 63 | ensn1 | ⊢ { ( 𝑓 ‘ 𝑘 ) } ≈ 1o |
| 65 | 62 64 | eqbrtrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ { ( 𝑓 ‘ 𝑘 ) } ) → ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) |
| 66 | 65 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → ( ∪ ( 𝐹 ‘ 𝑘 ) ⊆ { ( 𝑓 ‘ 𝑘 ) } → ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) |
| 67 | 51 66 | biimtrrid | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → ( ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) = ∅ → ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) |
| 68 | 67 | con3d | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → ( ¬ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o → ¬ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) = ∅ ) ) |
| 69 | neq0 | ⊢ ( ¬ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) = ∅ ↔ ∃ 𝑥 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) | |
| 70 | 68 69 | imbitrdi | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → ( ¬ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o → ∃ 𝑥 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) ) |
| 71 | eldifi | ⊢ ( 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) → 𝑥 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 72 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ∧ 𝑛 ∈ 𝐴 ) → 𝑥 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 73 | iftrue | ⊢ ( 𝑛 = 𝑘 → if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) = 𝑥 ) | |
| 74 | 73 23 | eleq12d | ⊢ ( 𝑛 = 𝑘 → ( if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ↔ 𝑥 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 75 | 72 74 | syl5ibrcom | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ∧ 𝑛 ∈ 𝐴 ) → ( 𝑛 = 𝑘 → if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) ) |
| 76 | 53 2 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → 𝑓 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 77 | 55 | elixp | ⊢ ( 𝑓 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑛 ∈ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) ) |
| 78 | 77 | simprbi | ⊢ ( 𝑓 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 79 | 76 78 | syl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ∀ 𝑛 ∈ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 80 | 79 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ∀ 𝑛 ∈ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 81 | 80 | r19.21bi | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ∧ 𝑛 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 82 | iffalse | ⊢ ( ¬ 𝑛 = 𝑘 → if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) = ( 𝑓 ‘ 𝑛 ) ) | |
| 83 | 82 | eleq1d | ⊢ ( ¬ 𝑛 = 𝑘 → ( if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ↔ ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) ) |
| 84 | 81 83 | syl5ibrcom | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ∧ 𝑛 ∈ 𝐴 ) → ( ¬ 𝑛 = 𝑘 → if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) ) |
| 85 | 75 84 | pm2.61d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ∧ 𝑛 ∈ 𝐴 ) → if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 86 | 85 | ralrimiva | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ∀ 𝑛 ∈ 𝐴 if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 87 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → 𝐴 ∈ 𝑉 ) |
| 88 | mptelixpg | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐴 if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 89 | 87 88 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐴 if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) ) |
| 90 | 86 89 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 91 | 90 2 | eleqtrrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ∈ 𝑋 ) |
| 92 | 71 91 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) → ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ∈ 𝑋 ) |
| 93 | unisnv | ⊢ ∪ { 𝑘 } = 𝑘 | |
| 94 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) → 𝑘 ∈ 𝐴 ) | |
| 95 | eleq1w | ⊢ ( 𝑚 = 𝑘 → ( 𝑚 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴 ) ) | |
| 96 | 94 95 | syl5ibrcom | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) → ( 𝑚 = 𝑘 → 𝑚 ∈ 𝐴 ) ) |
| 97 | 96 | pm4.71rd | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) → ( 𝑚 = 𝑘 ↔ ( 𝑚 ∈ 𝐴 ∧ 𝑚 = 𝑘 ) ) ) |
| 98 | equequ1 | ⊢ ( 𝑛 = 𝑚 → ( 𝑛 = 𝑘 ↔ 𝑚 = 𝑘 ) ) | |
| 99 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑚 ) ) | |
| 100 | 98 99 | ifbieq2d | ⊢ ( 𝑛 = 𝑚 → if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) = if ( 𝑚 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑚 ) ) ) |
| 101 | eqid | ⊢ ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) | |
| 102 | vex | ⊢ 𝑥 ∈ V | |
| 103 | fvex | ⊢ ( 𝑓 ‘ 𝑚 ) ∈ V | |
| 104 | 102 103 | ifex | ⊢ if ( 𝑚 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑚 ) ) ∈ V |
| 105 | 100 101 104 | fvmpt | ⊢ ( 𝑚 ∈ 𝐴 → ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ‘ 𝑚 ) = if ( 𝑚 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑚 ) ) ) |
| 106 | 105 | neeq1d | ⊢ ( 𝑚 ∈ 𝐴 → ( ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≠ ( 𝑓 ‘ 𝑚 ) ↔ if ( 𝑚 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑚 ) ) ≠ ( 𝑓 ‘ 𝑚 ) ) ) |
| 107 | 106 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≠ ( 𝑓 ‘ 𝑚 ) ↔ if ( 𝑚 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑚 ) ) ≠ ( 𝑓 ‘ 𝑚 ) ) ) |
| 108 | iffalse | ⊢ ( ¬ 𝑚 = 𝑘 → if ( 𝑚 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑚 ) ) = ( 𝑓 ‘ 𝑚 ) ) | |
| 109 | 108 | necon1ai | ⊢ ( if ( 𝑚 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑚 ) ) ≠ ( 𝑓 ‘ 𝑚 ) → 𝑚 = 𝑘 ) |
| 110 | eldifsni | ⊢ ( 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) → 𝑥 ≠ ( 𝑓 ‘ 𝑘 ) ) | |
| 111 | 110 | ad2antlr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) ∧ 𝑚 ∈ 𝐴 ) → 𝑥 ≠ ( 𝑓 ‘ 𝑘 ) ) |
| 112 | iftrue | ⊢ ( 𝑚 = 𝑘 → if ( 𝑚 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑚 ) ) = 𝑥 ) | |
| 113 | fveq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ 𝑘 ) ) | |
| 114 | 112 113 | neeq12d | ⊢ ( 𝑚 = 𝑘 → ( if ( 𝑚 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑚 ) ) ≠ ( 𝑓 ‘ 𝑚 ) ↔ 𝑥 ≠ ( 𝑓 ‘ 𝑘 ) ) ) |
| 115 | 111 114 | syl5ibrcom | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) ∧ 𝑚 ∈ 𝐴 ) → ( 𝑚 = 𝑘 → if ( 𝑚 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑚 ) ) ≠ ( 𝑓 ‘ 𝑚 ) ) ) |
| 116 | 109 115 | impbid2 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) ∧ 𝑚 ∈ 𝐴 ) → ( if ( 𝑚 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑚 ) ) ≠ ( 𝑓 ‘ 𝑚 ) ↔ 𝑚 = 𝑘 ) ) |
| 117 | 107 116 | bitrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≠ ( 𝑓 ‘ 𝑚 ) ↔ 𝑚 = 𝑘 ) ) |
| 118 | 117 | pm5.32da | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) → ( ( 𝑚 ∈ 𝐴 ∧ ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≠ ( 𝑓 ‘ 𝑚 ) ) ↔ ( 𝑚 ∈ 𝐴 ∧ 𝑚 = 𝑘 ) ) ) |
| 119 | 97 118 | bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) → ( 𝑚 = 𝑘 ↔ ( 𝑚 ∈ 𝐴 ∧ ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≠ ( 𝑓 ‘ 𝑚 ) ) ) ) |
| 120 | 119 | abbidv | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) → { 𝑚 ∣ 𝑚 = 𝑘 } = { 𝑚 ∣ ( 𝑚 ∈ 𝐴 ∧ ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≠ ( 𝑓 ‘ 𝑚 ) ) } ) |
| 121 | df-sn | ⊢ { 𝑘 } = { 𝑚 ∣ 𝑚 = 𝑘 } | |
| 122 | df-rab | ⊢ { 𝑚 ∈ 𝐴 ∣ ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≠ ( 𝑓 ‘ 𝑚 ) } = { 𝑚 ∣ ( 𝑚 ∈ 𝐴 ∧ ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≠ ( 𝑓 ‘ 𝑚 ) ) } | |
| 123 | 120 121 122 | 3eqtr4g | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) → { 𝑘 } = { 𝑚 ∈ 𝐴 ∣ ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≠ ( 𝑓 ‘ 𝑚 ) } ) |
| 124 | fvex | ⊢ ( 𝑓 ‘ 𝑛 ) ∈ V | |
| 125 | 102 124 | ifex | ⊢ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ∈ V |
| 126 | 125 | rgenw | ⊢ ∀ 𝑛 ∈ 𝐴 if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ∈ V |
| 127 | 101 | fnmpt | ⊢ ( ∀ 𝑛 ∈ 𝐴 if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ∈ V → ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) Fn 𝐴 ) |
| 128 | 126 127 | mp1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) → ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) Fn 𝐴 ) |
| 129 | ixpfn | ⊢ ( 𝑓 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) → 𝑓 Fn 𝐴 ) | |
| 130 | 76 129 | syl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → 𝑓 Fn 𝐴 ) |
| 131 | 130 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) → 𝑓 Fn 𝐴 ) |
| 132 | fndmdif | ⊢ ( ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) Fn 𝐴 ∧ 𝑓 Fn 𝐴 ) → dom ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ∖ 𝑓 ) = { 𝑚 ∈ 𝐴 ∣ ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≠ ( 𝑓 ‘ 𝑚 ) } ) | |
| 133 | 128 131 132 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) → dom ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ∖ 𝑓 ) = { 𝑚 ∈ 𝐴 ∣ ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≠ ( 𝑓 ‘ 𝑚 ) } ) |
| 134 | 123 133 | eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) → { 𝑘 } = dom ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ∖ 𝑓 ) ) |
| 135 | 134 | unieqd | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) → ∪ { 𝑘 } = ∪ dom ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ∖ 𝑓 ) ) |
| 136 | 93 135 | eqtr3id | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) → 𝑘 = ∪ dom ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ∖ 𝑓 ) ) |
| 137 | difeq1 | ⊢ ( 𝑔 = ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) → ( 𝑔 ∖ 𝑓 ) = ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ∖ 𝑓 ) ) | |
| 138 | 137 | dmeqd | ⊢ ( 𝑔 = ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) → dom ( 𝑔 ∖ 𝑓 ) = dom ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ∖ 𝑓 ) ) |
| 139 | 138 | unieqd | ⊢ ( 𝑔 = ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) → ∪ dom ( 𝑔 ∖ 𝑓 ) = ∪ dom ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ∖ 𝑓 ) ) |
| 140 | 139 | rspceeqv | ⊢ ( ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ∈ 𝑋 ∧ 𝑘 = ∪ dom ( ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 = 𝑘 , 𝑥 , ( 𝑓 ‘ 𝑛 ) ) ) ∖ 𝑓 ) ) → ∃ 𝑔 ∈ 𝑋 𝑘 = ∪ dom ( 𝑔 ∖ 𝑓 ) ) |
| 141 | 92 136 140 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) ) → ∃ 𝑔 ∈ 𝑋 𝑘 = ∪ dom ( 𝑔 ∖ 𝑓 ) ) |
| 142 | 141 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) → ∃ 𝑔 ∈ 𝑋 𝑘 = ∪ dom ( 𝑔 ∖ 𝑓 ) ) ) |
| 143 | 142 | exlimdv | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → ( ∃ 𝑥 𝑥 ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ { ( 𝑓 ‘ 𝑘 ) } ) → ∃ 𝑔 ∈ 𝑋 𝑘 = ∪ dom ( 𝑔 ∖ 𝑓 ) ) ) |
| 144 | 70 143 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → ( ¬ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o → ∃ 𝑔 ∈ 𝑋 𝑘 = ∪ dom ( 𝑔 ∖ 𝑓 ) ) ) |
| 145 | 144 | expimpd | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ( ( 𝑘 ∈ 𝐴 ∧ ¬ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) → ∃ 𝑔 ∈ 𝑋 𝑘 = ∪ dom ( 𝑔 ∖ 𝑓 ) ) ) |
| 146 | 23 | breq1d | ⊢ ( 𝑛 = 𝑘 → ( ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o ↔ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) |
| 147 | 146 | notbid | ⊢ ( 𝑛 = 𝑘 → ( ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o ↔ ¬ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) |
| 148 | 147 | elrab | ⊢ ( 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ↔ ( 𝑘 ∈ 𝐴 ∧ ¬ ∪ ( 𝐹 ‘ 𝑘 ) ≈ 1o ) ) |
| 149 | 44 | elrnmpt | ⊢ ( 𝑘 ∈ V → ( 𝑘 ∈ ran ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) ↔ ∃ 𝑔 ∈ 𝑋 𝑘 = ∪ dom ( 𝑔 ∖ 𝑓 ) ) ) |
| 150 | 149 | elv | ⊢ ( 𝑘 ∈ ran ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) ↔ ∃ 𝑔 ∈ 𝑋 𝑘 = ∪ dom ( 𝑔 ∖ 𝑓 ) ) |
| 151 | 145 148 150 | 3imtr4g | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ( 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } → 𝑘 ∈ ran ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) ) ) |
| 152 | 151 | ssrdv | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⊆ ran ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) ) |
| 153 | ssnum | ⊢ ( ( ran ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) ∈ dom card ∧ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⊆ ran ( 𝑔 ∈ 𝑋 ↦ ∪ dom ( 𝑔 ∖ 𝑓 ) ) ) → { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∈ dom card ) | |
| 154 | 50 152 153 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∈ dom card ) |
| 155 | xpnum | ⊢ ( ( X 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ∈ dom card ∧ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∈ dom card ) → ( X 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) × { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ) ∈ dom card ) | |
| 156 | 36 154 155 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ( X 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) × { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ) ∈ dom card ) |
| 157 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → 𝐴 ∈ 𝑉 ) |
| 158 | rabexg | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∈ V ) | |
| 159 | 157 158 | syl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∈ V ) |
| 160 | fvex | ⊢ ( 𝐹 ‘ 𝑘 ) ∈ V | |
| 161 | 160 | uniex | ⊢ ∪ ( 𝐹 ‘ 𝑘 ) ∈ V |
| 162 | 161 | rgenw | ⊢ ∀ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ∈ V |
| 163 | iunexg | ⊢ ( ( { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∈ V ∧ ∀ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ∈ V ) → ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ∈ V ) | |
| 164 | 159 162 163 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ∈ V ) |
| 165 | resixp | ⊢ ( ( { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ⊆ 𝐴 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑓 ↾ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ) ∈ X 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 166 | 29 54 165 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ( 𝑓 ↾ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ) ∈ X 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 167 | 166 | ne0d | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → X 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ≠ ∅ ) |
| 168 | ixpiunwdom | ⊢ ( ( { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∈ V ∧ ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ∈ V ∧ X 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ≠ ∅ ) → ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ≼* ( X 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) × { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ) ) | |
| 169 | 159 164 167 168 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ≼* ( X 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) × { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ) ) |
| 170 | numwdom | ⊢ ( ( ( X 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) × { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ) ∈ dom card ∧ ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ≼* ( X 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) × { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ) ) → ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ∈ dom card ) | |
| 171 | 156 169 170 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ∈ dom card ) |
| 172 | 21 171 | exlimddv | ⊢ ( 𝜑 → ∪ 𝑘 ∈ { 𝑛 ∈ 𝐴 ∣ ¬ ∪ ( 𝐹 ‘ 𝑛 ) ≈ 1o } ∪ ( 𝐹 ‘ 𝑘 ) ∈ dom card ) |