This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Tychonoff's theorem: The product of compact spaces is compact. The proof uses the Axiom of Choice. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ptcmp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ 𝐹 ) ∈ Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | ⊢ ( ∏t ‘ 𝐹 ) ∈ V | |
| 2 | 1 | uniex | ⊢ ∪ ( ∏t ‘ 𝐹 ) ∈ V |
| 3 | axac3 | ⊢ CHOICE | |
| 4 | acufl | ⊢ ( CHOICE → UFL = V ) | |
| 5 | 3 4 | ax-mp | ⊢ UFL = V |
| 6 | 2 5 | eleqtrri | ⊢ ∪ ( ∏t ‘ 𝐹 ) ∈ UFL |
| 7 | cardeqv | ⊢ dom card = V | |
| 8 | 2 7 | eleqtrri | ⊢ ∪ ( ∏t ‘ 𝐹 ) ∈ dom card |
| 9 | 6 8 | elini | ⊢ ∪ ( ∏t ‘ 𝐹 ) ∈ ( UFL ∩ dom card ) |
| 10 | eqid | ⊢ ( ∏t ‘ 𝐹 ) = ( ∏t ‘ 𝐹 ) | |
| 11 | eqid | ⊢ ∪ ( ∏t ‘ 𝐹 ) = ∪ ( ∏t ‘ 𝐹 ) | |
| 12 | 10 11 | ptcmpg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Comp ∧ ∪ ( ∏t ‘ 𝐹 ) ∈ ( UFL ∩ dom card ) ) → ( ∏t ‘ 𝐹 ) ∈ Comp ) |
| 13 | 9 12 | mp3an3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ 𝐹 ) ∈ Comp ) |