This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexv | ⊢ ( ∃ 𝑥 ∈ V 𝜑 ↔ ∃ 𝑥 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex | ⊢ ( ∃ 𝑥 ∈ V 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ V ∧ 𝜑 ) ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 | biantrur | ⊢ ( 𝜑 ↔ ( 𝑥 ∈ V ∧ 𝜑 ) ) |
| 4 | 3 | exbii | ⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ V ∧ 𝜑 ) ) |
| 5 | 1 4 | bitr4i | ⊢ ( ∃ 𝑥 ∈ V 𝜑 ↔ ∃ 𝑥 𝜑 ) |