This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open cover of a compact topology has a finite subcover. (Contributed by Jeff Hankins, 29-Jun-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | cmpcov | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑆 ) → ∃ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑋 = ∪ 𝑠 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | unieq | ⊢ ( 𝑟 = 𝑆 → ∪ 𝑟 = ∪ 𝑆 ) | |
| 3 | 2 | eqeq2d | ⊢ ( 𝑟 = 𝑆 → ( 𝑋 = ∪ 𝑟 ↔ 𝑋 = ∪ 𝑆 ) ) |
| 4 | pweq | ⊢ ( 𝑟 = 𝑆 → 𝒫 𝑟 = 𝒫 𝑆 ) | |
| 5 | 4 | ineq1d | ⊢ ( 𝑟 = 𝑆 → ( 𝒫 𝑟 ∩ Fin ) = ( 𝒫 𝑆 ∩ Fin ) ) |
| 6 | 5 | rexeqdv | ⊢ ( 𝑟 = 𝑆 → ( ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑋 = ∪ 𝑠 ↔ ∃ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) |
| 7 | 3 6 | imbi12d | ⊢ ( 𝑟 = 𝑆 → ( ( 𝑋 = ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑋 = ∪ 𝑠 ) ↔ ( 𝑋 = ∪ 𝑆 → ∃ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) ) |
| 8 | 1 | iscmp | ⊢ ( 𝐽 ∈ Comp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) ) |
| 9 | 8 | simprbi | ⊢ ( 𝐽 ∈ Comp → ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ) → ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) |
| 11 | ssexg | ⊢ ( ( 𝑆 ⊆ 𝐽 ∧ 𝐽 ∈ Comp ) → 𝑆 ∈ V ) | |
| 12 | 11 | ancoms | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ) → 𝑆 ∈ V ) |
| 13 | simpr | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ) → 𝑆 ⊆ 𝐽 ) | |
| 14 | 12 13 | elpwd | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ) → 𝑆 ∈ 𝒫 𝐽 ) |
| 15 | 7 10 14 | rspcdva | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ) → ( 𝑋 = ∪ 𝑆 → ∃ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑋 = ∪ 𝑠 ) ) |
| 16 | 15 | 3impia | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑆 ) → ∃ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑋 = ∪ 𝑠 ) |