This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of indexed union when B is a set. Definition 15(a) of Suppes p. 44. (Contributed by NM, 23-Mar-2006) (Proof shortened by Andrew Salmon, 25-Jul-2011) (Proof shortened by Rohan Ridenour, 11-Aug-2023) Avoid ax-10 , ax-12 . (Revised by SN, 11-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfiun2g | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } | |
| 2 | elisset | ⊢ ( 𝐵 ∈ 𝐶 → ∃ 𝑧 𝑧 = 𝐵 ) | |
| 3 | eleq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝐵 ) ) | |
| 4 | 3 | pm5.32ri | ⊢ ( ( 𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵 ) ↔ ( 𝑤 ∈ 𝐵 ∧ 𝑧 = 𝐵 ) ) |
| 5 | 4 | simplbi2 | ⊢ ( 𝑤 ∈ 𝐵 → ( 𝑧 = 𝐵 → ( 𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵 ) ) ) |
| 6 | 5 | eximdv | ⊢ ( 𝑤 ∈ 𝐵 → ( ∃ 𝑧 𝑧 = 𝐵 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵 ) ) ) |
| 7 | 2 6 | syl5com | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝑤 ∈ 𝐵 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵 ) ) ) |
| 8 | 7 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∀ 𝑥 ∈ 𝐴 ( 𝑤 ∈ 𝐵 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵 ) ) ) |
| 9 | rexim | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑤 ∈ 𝐵 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵 ) ) → ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵 ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵 ) ) ) |
| 11 | rexcom4 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵 ) ↔ ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 ( 𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵 ) ) | |
| 12 | r19.42v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵 ) ↔ ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) | |
| 13 | 12 | exbii | ⊢ ( ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 ( 𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵 ) ↔ ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) |
| 14 | 11 13 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵 ) ↔ ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) |
| 15 | 10 14 | imbitrdi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) ) |
| 16 | 3 | biimpac | ⊢ ( ( 𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵 ) → 𝑤 ∈ 𝐵 ) |
| 17 | 16 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑤 ∈ 𝑧 ∧ 𝑧 = 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 ) |
| 18 | 12 17 | sylbir | ⊢ ( ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 ) |
| 19 | 18 | exlimiv | ⊢ ( ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 ) |
| 20 | 15 19 | impbid1 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ( ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 ↔ ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) ) |
| 21 | vex | ⊢ 𝑤 ∈ V | |
| 22 | eleq1w | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵 ) ) | |
| 23 | 22 | rexbidv | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 ) ) |
| 24 | 21 23 | elab | ⊢ ( 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } ↔ ∃ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 ) |
| 25 | eluni | ⊢ ( 𝑤 ∈ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ↔ ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) ) | |
| 26 | vex | ⊢ 𝑧 ∈ V | |
| 27 | eqeq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 = 𝐵 ↔ 𝑧 = 𝐵 ) ) | |
| 28 | 27 | rexbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) |
| 29 | 26 28 | elab | ⊢ ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
| 30 | 29 | anbi2i | ⊢ ( ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) ↔ ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) |
| 31 | 30 | exbii | ⊢ ( ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) ↔ ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) |
| 32 | 25 31 | bitri | ⊢ ( 𝑤 ∈ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ↔ ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) |
| 33 | 20 24 32 | 3bitr4g | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ( 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } ↔ 𝑤 ∈ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) ) |
| 34 | 33 | eqrdv | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |
| 35 | 1 34 | eqtrid | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |