This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of ac6 which takes the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ac6num.1 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | ac6num | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6num.1 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | nfiu1 | ⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } | |
| 3 | 2 | nfel1 | ⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card |
| 4 | ssiun2 | ⊢ ( 𝑥 ∈ 𝐴 → { 𝑦 ∈ 𝐵 ∣ 𝜑 } ⊆ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) | |
| 5 | ssexg | ⊢ ( ( { 𝑦 ∈ 𝐵 ∣ 𝜑 } ⊆ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ) → { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ V ) | |
| 6 | 5 | expcom | ⊢ ( ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card → ( { 𝑦 ∈ 𝐵 ∣ 𝜑 } ⊆ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } → { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ V ) ) |
| 7 | 4 6 | syl5 | ⊢ ( ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card → ( 𝑥 ∈ 𝐴 → { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ V ) ) |
| 8 | 3 7 | ralrimi | ⊢ ( ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card → ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ V ) |
| 9 | dfiun2g | ⊢ ( ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ V → ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } } ) | |
| 10 | 8 9 | syl | ⊢ ( ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card → ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } } ) |
| 11 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) | |
| 12 | 11 | rnmpt | ⊢ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } } |
| 13 | 12 | unieqi | ⊢ ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) = ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } } |
| 14 | 10 13 | eqtr4di | ⊢ ( ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card → ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 15 | id | ⊢ ( ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card → ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ) | |
| 16 | 14 15 | eqeltrrd | ⊢ ( ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card → ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ dom card ) |
| 17 | 16 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ dom card ) |
| 18 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) | |
| 19 | necom | ⊢ ( { 𝑦 ∈ 𝐵 ∣ 𝜑 } ≠ ∅ ↔ ∅ ≠ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) | |
| 20 | rabn0 | ⊢ ( { 𝑦 ∈ 𝐵 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑦 ∈ 𝐵 𝜑 ) | |
| 21 | df-ne | ⊢ ( ∅ ≠ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ↔ ¬ ∅ = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) | |
| 22 | 19 20 21 | 3bitr3i | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∅ = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
| 23 | 22 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ¬ ∅ = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
| 24 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ∅ = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ↔ ¬ ∃ 𝑥 ∈ 𝐴 ∅ = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) | |
| 25 | 23 24 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃ 𝑥 ∈ 𝐴 ∅ = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
| 26 | 18 25 | sylib | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ¬ ∃ 𝑥 ∈ 𝐴 ∅ = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
| 27 | 0ex | ⊢ ∅ ∈ V | |
| 28 | 11 | elrnmpt | ⊢ ( ∅ ∈ V → ( ∅ ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ↔ ∃ 𝑥 ∈ 𝐴 ∅ = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 29 | 27 28 | ax-mp | ⊢ ( ∅ ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ↔ ∃ 𝑥 ∈ 𝐴 ∅ = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
| 30 | 26 29 | sylnibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ¬ ∅ ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 31 | ac5num | ⊢ ( ( ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ dom card ∧ ¬ ∅ ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ∃ 𝑔 ( 𝑔 : ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ⟶ ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) | |
| 32 | 17 30 31 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑔 ( 𝑔 : ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ⟶ ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 33 | ffn | ⊢ ( 𝑔 : ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ⟶ ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) → 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) | |
| 34 | 33 | anim1i | ⊢ ( ( 𝑔 : ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ⟶ ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 35 | 8 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ V ) |
| 36 | fveq2 | ⊢ ( 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } → ( 𝑔 ‘ 𝑧 ) = ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) | |
| 37 | id | ⊢ ( 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } → 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) | |
| 38 | 36 37 | eleq12d | ⊢ ( 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } → ( ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 39 | 11 38 | ralrnmptw | ⊢ ( ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 40 | 35 39 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 41 | 40 | anbi2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ( ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) ) |
| 42 | 34 41 | imbitrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ( ( 𝑔 : ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ⟶ ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) ) |
| 43 | simpl1 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → 𝐴 ∈ 𝑉 ) | |
| 44 | 43 | mptexd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) ∈ V ) |
| 45 | elrabi | ⊢ ( ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } → ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ 𝐵 ) | |
| 46 | 45 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } → ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ 𝐵 ) |
| 47 | 46 | ad2antll | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ 𝐵 ) |
| 48 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) | |
| 49 | 48 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ 𝐵 ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) : 𝐴 ⟶ 𝐵 ) |
| 50 | 47 49 | sylib | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) : 𝐴 ⟶ 𝐵 ) |
| 51 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 52 | 51 | elrabsf | ⊢ ( ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ↔ ( ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ 𝐵 ∧ [ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) / 𝑦 ] 𝜑 ) ) |
| 53 | 52 | simprbi | ⊢ ( ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } → [ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) / 𝑦 ] 𝜑 ) |
| 54 | 53 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } → ∀ 𝑥 ∈ 𝐴 [ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) / 𝑦 ] 𝜑 ) |
| 55 | 54 | ad2antll | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ∀ 𝑥 ∈ 𝐴 [ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) / 𝑦 ] 𝜑 ) |
| 56 | 50 55 | jca | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) / 𝑦 ] 𝜑 ) ) |
| 57 | feq1 | ⊢ ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ( 𝑓 : 𝐴 ⟶ 𝐵 ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) : 𝐴 ⟶ 𝐵 ) ) | |
| 58 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) | |
| 59 | 58 | nfeq2 | ⊢ Ⅎ 𝑥 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 60 | fvex | ⊢ ( 𝑓 ‘ 𝑥 ) ∈ V | |
| 61 | 60 1 | sbcie | ⊢ ( [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ↔ 𝜓 ) |
| 62 | fveq1 | ⊢ ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ( 𝑓 ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) ‘ 𝑥 ) ) | |
| 63 | fvex | ⊢ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ V | |
| 64 | 48 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ V ) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) ‘ 𝑥 ) = ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 65 | 63 64 | mpan2 | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) ‘ 𝑥 ) = ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 66 | 62 65 | sylan9eq | ⊢ ( ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
| 67 | 66 | sbceq1d | ⊢ ( ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) / 𝑦 ] 𝜑 ) ) |
| 68 | 61 67 | bitr3id | ⊢ ( ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ [ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) / 𝑦 ] 𝜑 ) ) |
| 69 | 59 68 | ralbida | ⊢ ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 [ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) / 𝑦 ] 𝜑 ) ) |
| 70 | 57 69 | anbi12d | ⊢ ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 [ ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) / 𝑦 ] 𝜑 ) ) ) |
| 71 | 44 56 70 | spcedv | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ∧ ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 72 | 71 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ( ( 𝑔 Fn ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 73 | 42 72 | syld | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ( ( 𝑔 : ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ⟶ ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 74 | 73 | exlimdv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ( ∃ 𝑔 ( 𝑔 : ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ⟶ ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 75 | 32 74 | mpd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |