This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ptcmp . (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptcmp.1 | ⊢ 𝑆 = ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| ptcmp.2 | ⊢ 𝑋 = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) | ||
| ptcmp.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| ptcmp.4 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Comp ) | ||
| ptcmp.5 | ⊢ ( 𝜑 → 𝑋 ∈ ( UFL ∩ dom card ) ) | ||
| ptcmplem2.5 | ⊢ ( 𝜑 → 𝑈 ⊆ ran 𝑆 ) | ||
| ptcmplem2.6 | ⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) | ||
| ptcmplem2.7 | ⊢ ( 𝜑 → ¬ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 = ∪ 𝑧 ) | ||
| ptcmplem3.8 | ⊢ 𝐾 = { 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∣ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝑈 } | ||
| Assertion | ptcmplem4 | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcmp.1 | ⊢ 𝑆 = ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| 2 | ptcmp.2 | ⊢ 𝑋 = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) | |
| 3 | ptcmp.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 4 | ptcmp.4 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Comp ) | |
| 5 | ptcmp.5 | ⊢ ( 𝜑 → 𝑋 ∈ ( UFL ∩ dom card ) ) | |
| 6 | ptcmplem2.5 | ⊢ ( 𝜑 → 𝑈 ⊆ ran 𝑆 ) | |
| 7 | ptcmplem2.6 | ⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) | |
| 8 | ptcmplem2.7 | ⊢ ( 𝜑 → ¬ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 = ∪ 𝑧 ) | |
| 9 | ptcmplem3.8 | ⊢ 𝐾 = { 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∣ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝑈 } | |
| 10 | 1 2 3 4 5 6 7 8 9 | ptcmplem3 | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 11 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → 𝑓 Fn 𝐴 ) | |
| 12 | eldifi | ⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 13 | 12 | ralimi | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 14 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑘 ) ) | |
| 15 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 16 | 15 | unieqd | ⊢ ( 𝑛 = 𝑘 → ∪ ( 𝐹 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 17 | 14 16 | eleq12d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ↔ ( 𝑓 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 18 | 17 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 19 | 13 18 | sylibr | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ∀ 𝑛 ∈ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 20 | 19 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → ∀ 𝑛 ∈ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 21 | vex | ⊢ 𝑓 ∈ V | |
| 22 | 21 | elixp | ⊢ ( 𝑓 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑛 ∈ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) ) |
| 23 | 11 20 22 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → 𝑓 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 24 | 23 2 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → 𝑓 ∈ 𝑋 ) |
| 25 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → 𝑋 = ∪ 𝑈 ) |
| 26 | 24 25 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → 𝑓 ∈ ∪ 𝑈 ) |
| 27 | eluni2 | ⊢ ( 𝑓 ∈ ∪ 𝑈 ↔ ∃ 𝑣 ∈ 𝑈 𝑓 ∈ 𝑣 ) | |
| 28 | 26 27 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → ∃ 𝑣 ∈ 𝑈 𝑓 ∈ 𝑣 ) |
| 29 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → 𝑓 ∈ 𝑣 ) | |
| 30 | 29 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → 𝑓 ∈ 𝑣 ) |
| 31 | simprr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| 32 | 30 31 | eleqtrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → 𝑓 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 33 | fveq1 | ⊢ ( 𝑤 = 𝑓 → ( 𝑤 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) | |
| 34 | 33 | eleq1d | ⊢ ( 𝑤 = 𝑓 → ( ( 𝑤 ‘ 𝑘 ) ∈ 𝑢 ↔ ( 𝑓 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 35 | eqid | ⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) | |
| 36 | 35 | mptpreima | ⊢ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = { 𝑤 ∈ 𝑋 ∣ ( 𝑤 ‘ 𝑘 ) ∈ 𝑢 } |
| 37 | 34 36 | elrab2 | ⊢ ( 𝑓 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ( 𝑓 ∈ 𝑋 ∧ ( 𝑓 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 38 | 37 | simprbi | ⊢ ( 𝑓 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝑢 ) |
| 39 | 32 38 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝑢 ) |
| 40 | simprl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) | |
| 41 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → 𝑣 ∈ 𝑈 ) | |
| 42 | 41 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → 𝑣 ∈ 𝑈 ) |
| 43 | 31 42 | eqeltrrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝑈 ) |
| 44 | rabid | ⊢ ( 𝑢 ∈ { 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∣ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝑈 } ↔ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝑈 ) ) | |
| 45 | 40 43 44 | sylanbrc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → 𝑢 ∈ { 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∣ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝑈 } ) |
| 46 | 45 9 | eleqtrrdi | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → 𝑢 ∈ 𝐾 ) |
| 47 | elunii | ⊢ ( ( ( 𝑓 ‘ 𝑘 ) ∈ 𝑢 ∧ 𝑢 ∈ 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) | |
| 48 | 39 46 47 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) |
| 49 | 48 | rexlimdvaa | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → ( ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) ) |
| 50 | 49 | expr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ( ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) ) ) |
| 51 | 50 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ∀ 𝑘 ∈ 𝐴 ( ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) ) ) |
| 52 | 51 | ex | ⊢ ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) → ( ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ∀ 𝑘 ∈ 𝐴 ( ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) ) ) ) |
| 53 | 52 | com23 | ⊢ ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ( ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) → ∀ 𝑘 ∈ 𝐴 ( ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) ) ) ) |
| 54 | 53 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → ( ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) → ∀ 𝑘 ∈ 𝐴 ( ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) ) ) |
| 55 | 54 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) → ∀ 𝑘 ∈ 𝐴 ( ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) ) |
| 56 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → 𝑈 ⊆ ran 𝑆 ) |
| 57 | 56 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ 𝑣 ∈ 𝑈 ) → 𝑣 ∈ ran 𝑆 ) |
| 58 | 57 | adantrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) → 𝑣 ∈ ran 𝑆 ) |
| 59 | 1 | rnmpo | ⊢ ran 𝑆 = { 𝑣 ∣ ∃ 𝑘 ∈ 𝐴 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) } |
| 60 | 58 59 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) → 𝑣 ∈ { 𝑣 ∣ ∃ 𝑘 ∈ 𝐴 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) } ) |
| 61 | abid | ⊢ ( 𝑣 ∈ { 𝑣 ∣ ∃ 𝑘 ∈ 𝐴 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) } ↔ ∃ 𝑘 ∈ 𝐴 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| 62 | 60 61 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) → ∃ 𝑘 ∈ 𝐴 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 63 | rexim | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) → ( ∃ 𝑘 ∈ 𝐴 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ∃ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) ) | |
| 64 | 55 62 63 | sylc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) → ∃ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) |
| 65 | 28 64 | rexlimddv | ⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → ∃ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) |
| 66 | eldifn | ⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ¬ ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) | |
| 67 | 66 | ralimi | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ∀ 𝑘 ∈ 𝐴 ¬ ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) |
| 68 | 67 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → ∀ 𝑘 ∈ 𝐴 ¬ ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) |
| 69 | ralnex | ⊢ ( ∀ 𝑘 ∈ 𝐴 ¬ ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ↔ ¬ ∃ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) | |
| 70 | 68 69 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → ¬ ∃ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) |
| 71 | 65 70 | pm2.65da | ⊢ ( 𝜑 → ¬ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 72 | 71 | nexdv | ⊢ ( 𝜑 → ¬ ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 73 | 10 72 | pm2.65i | ⊢ ¬ 𝜑 |