This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsdsf.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| prdsdsf.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsdsf.v | ⊢ 𝑉 = ( Base ‘ 𝑅 ) | ||
| prdsdsf.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | ||
| prdsdsf.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | ||
| prdsdsf.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | ||
| prdsdsf.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) | ||
| prdsdsf.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ 𝑍 ) | ||
| prdsdsf.m | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) | ||
| Assertion | prdsxmetlem | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsdsf.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| 2 | prdsdsf.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsdsf.v | ⊢ 𝑉 = ( Base ‘ 𝑅 ) | |
| 4 | prdsdsf.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | |
| 5 | prdsdsf.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | |
| 6 | prdsdsf.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | |
| 7 | prdsdsf.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) | |
| 8 | prdsdsf.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ 𝑍 ) | |
| 9 | prdsdsf.m | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) | |
| 10 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 11 | 10 | a1i | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 12 | 1 2 3 4 5 6 7 8 9 | prdsdsf | ⊢ ( 𝜑 → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ) |
| 13 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 14 | fss | ⊢ ( ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ* ) | |
| 15 | 12 13 14 | sylancl | ⊢ ( 𝜑 → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ* ) |
| 16 | 12 | fovcdmda | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 𝐷 𝑔 ) ∈ ( 0 [,] +∞ ) ) |
| 17 | elxrge0 | ⊢ ( ( 𝑓 𝐷 𝑔 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑓 𝐷 𝑔 ) ∈ ℝ* ∧ 0 ≤ ( 𝑓 𝐷 𝑔 ) ) ) | |
| 18 | 17 | simprbi | ⊢ ( ( 𝑓 𝐷 𝑔 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝑓 𝐷 𝑔 ) ) |
| 19 | 16 18 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 0 ≤ ( 𝑓 𝐷 𝑔 ) ) |
| 20 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑆 ∈ 𝑊 ) |
| 21 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑋 ) |
| 22 | 8 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑍 ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑍 ) |
| 24 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 ∈ 𝐵 ) | |
| 25 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 ∈ 𝐵 ) | |
| 26 | 1 2 20 21 23 24 25 3 4 5 | prdsdsval3 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 𝐷 𝑔 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 27 | 26 | breq1d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ( 𝑓 𝐷 𝑔 ) ≤ 0 ↔ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ 0 ) ) |
| 28 | 9 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 29 | 1 2 20 21 23 3 24 | prdsbascl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) |
| 30 | 29 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) |
| 31 | 1 2 20 21 23 3 25 | prdsbascl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) |
| 32 | 31 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) |
| 33 | xmetcl | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ) | |
| 34 | 28 30 32 33 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 35 | 34 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) : 𝐼 ⟶ ℝ* ) |
| 36 | 35 | frnd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ⊆ ℝ* ) |
| 37 | 0xr | ⊢ 0 ∈ ℝ* | |
| 38 | 37 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 0 ∈ ℝ* ) |
| 39 | 38 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → { 0 } ⊆ ℝ* ) |
| 40 | 36 39 | unssd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
| 41 | supxrleub | ⊢ ( ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ∧ 0 ∈ ℝ* ) → ( sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ 0 ↔ ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ 0 ) ) | |
| 42 | 40 37 41 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ 0 ↔ ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ 0 ) ) |
| 43 | 0le0 | ⊢ 0 ≤ 0 | |
| 44 | c0ex | ⊢ 0 ∈ V | |
| 45 | breq1 | ⊢ ( 𝑧 = 0 → ( 𝑧 ≤ 0 ↔ 0 ≤ 0 ) ) | |
| 46 | 44 45 | ralsn | ⊢ ( ∀ 𝑧 ∈ { 0 } 𝑧 ≤ 0 ↔ 0 ≤ 0 ) |
| 47 | 43 46 | mpbir | ⊢ ∀ 𝑧 ∈ { 0 } 𝑧 ≤ 0 |
| 48 | ralunb | ⊢ ( ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ 0 ↔ ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑧 ≤ 0 ∧ ∀ 𝑧 ∈ { 0 } 𝑧 ≤ 0 ) ) | |
| 49 | 47 48 | mpbiran2 | ⊢ ( ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ 0 ↔ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑧 ≤ 0 ) |
| 50 | ovex | ⊢ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ V | |
| 51 | 50 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ V |
| 52 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) | |
| 53 | breq1 | ⊢ ( 𝑧 = ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) → ( 𝑧 ≤ 0 ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ) ) | |
| 54 | 52 53 | ralrnmptw | ⊢ ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑧 ≤ 0 ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ) ) |
| 55 | 51 54 | ax-mp | ⊢ ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑧 ≤ 0 ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ) |
| 56 | 49 55 | bitri | ⊢ ( ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ 0 ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ) |
| 57 | xmetge0 | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → 0 ≤ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) | |
| 58 | 28 30 32 57 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 0 ≤ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) |
| 59 | 58 | biantrud | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ↔ ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ∧ 0 ≤ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 60 | xrletri3 | ⊢ ( ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) = 0 ↔ ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ∧ 0 ≤ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ) ) | |
| 61 | 34 37 60 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) = 0 ↔ ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ∧ 0 ≤ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 62 | xmeteq0 | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) = 0 ↔ ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) | |
| 63 | 28 30 32 62 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) = 0 ↔ ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 64 | 59 61 63 | 3bitr2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ↔ ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 65 | 64 | ralbidva | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 66 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) | |
| 67 | 66 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑍 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) Fn 𝐼 ) |
| 68 | 22 67 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) Fn 𝐼 ) |
| 69 | 68 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) Fn 𝐼 ) |
| 70 | 1 2 20 21 69 24 | prdsbasfn | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 Fn 𝐼 ) |
| 71 | 1 2 20 21 69 25 | prdsbasfn | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 Fn 𝐼 ) |
| 72 | eqfnfv | ⊢ ( ( 𝑓 Fn 𝐼 ∧ 𝑔 Fn 𝐼 ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) | |
| 73 | 70 71 72 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) ) |
| 74 | 65 73 | bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ 0 ↔ 𝑓 = 𝑔 ) ) |
| 75 | 56 74 | bitrid | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ 0 ↔ 𝑓 = 𝑔 ) ) |
| 76 | 27 42 75 | 3bitrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ( 𝑓 𝐷 𝑔 ) ≤ 0 ↔ 𝑓 = 𝑔 ) ) |
| 77 | 26 | 3adantr3 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( 𝑓 𝐷 𝑔 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 78 | 77 | 3adant3 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( 𝑓 𝐷 𝑔 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 79 | 9 | 3ad2antl1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 80 | 29 | 3adantr3 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) |
| 81 | 80 | 3adant3 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) |
| 82 | 81 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) |
| 83 | 31 | 3adantr3 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) |
| 84 | 83 | 3adant3 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) |
| 85 | 84 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) |
| 86 | 79 82 85 33 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 87 | 6 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → 𝑆 ∈ 𝑊 ) |
| 88 | 7 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → 𝐼 ∈ 𝑋 ) |
| 89 | 22 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑍 ) |
| 90 | simp23 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ℎ ∈ 𝐵 ) | |
| 91 | 1 2 87 88 89 3 90 | prdsbascl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ∀ 𝑥 ∈ 𝐼 ( ℎ ‘ 𝑥 ) ∈ 𝑉 ) |
| 92 | 91 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ ‘ 𝑥 ) ∈ 𝑉 ) |
| 93 | xmetcl | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( ℎ ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ* ) | |
| 94 | 79 92 82 93 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 95 | simp3l | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ℎ 𝐷 𝑓 ) ∈ ℝ ) | |
| 96 | 95 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ 𝐷 𝑓 ) ∈ ℝ ) |
| 97 | xmetge0 | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( ℎ ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) → 0 ≤ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) | |
| 98 | 79 92 82 97 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → 0 ≤ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) |
| 99 | 94 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) : 𝐼 ⟶ ℝ* ) |
| 100 | 99 | frnd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ⊆ ℝ* ) |
| 101 | 37 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → 0 ∈ ℝ* ) |
| 102 | 101 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → { 0 } ⊆ ℝ* ) |
| 103 | 100 102 | unssd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
| 104 | ssun1 | ⊢ ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ⊆ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ∪ { 0 } ) | |
| 105 | ovex | ⊢ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ V | |
| 106 | 105 | elabrex | ⊢ ( 𝑥 ∈ 𝐼 → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐼 𝑧 = ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) } ) |
| 107 | 106 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐼 𝑧 = ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) } ) |
| 108 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) | |
| 109 | 108 | rnmpt | ⊢ ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐼 𝑧 = ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) } |
| 110 | 107 109 | eleqtrrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 111 | 104 110 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) |
| 112 | supxrub | ⊢ ( ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ∧ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ≤ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) | |
| 113 | 103 111 112 | syl2an2r | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ≤ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 114 | simp21 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → 𝑓 ∈ 𝐵 ) | |
| 115 | 1 2 87 88 89 90 114 3 4 5 | prdsdsval3 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ℎ 𝐷 𝑓 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 116 | 115 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ 𝐷 𝑓 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 117 | 113 116 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ≤ ( ℎ 𝐷 𝑓 ) ) |
| 118 | xrrege0 | ⊢ ( ( ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ* ∧ ( ℎ 𝐷 𝑓 ) ∈ ℝ ) ∧ ( 0 ≤ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∧ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ≤ ( ℎ 𝐷 𝑓 ) ) ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) | |
| 119 | 94 96 98 117 118 | syl22anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) |
| 120 | xmetcl | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( ℎ ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ) | |
| 121 | 79 92 85 120 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 122 | simp3r | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ℎ 𝐷 𝑔 ) ∈ ℝ ) | |
| 123 | 122 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ 𝐷 𝑔 ) ∈ ℝ ) |
| 124 | xmetge0 | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( ℎ ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → 0 ≤ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) | |
| 125 | 79 92 85 124 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → 0 ≤ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) |
| 126 | 121 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) : 𝐼 ⟶ ℝ* ) |
| 127 | 126 | frnd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ⊆ ℝ* ) |
| 128 | 127 102 | unssd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
| 129 | ssun1 | ⊢ ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ⊆ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) | |
| 130 | ovex | ⊢ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ V | |
| 131 | 130 | elabrex | ⊢ ( 𝑥 ∈ 𝐼 → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐼 𝑧 = ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) } ) |
| 132 | 131 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐼 𝑧 = ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) } ) |
| 133 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) | |
| 134 | 133 | rnmpt | ⊢ ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐼 𝑧 = ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) } |
| 135 | 132 134 | eleqtrrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 136 | 129 135 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) |
| 137 | supxrub | ⊢ ( ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ∧ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) | |
| 138 | 128 136 137 | syl2an2r | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 139 | simp22 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → 𝑔 ∈ 𝐵 ) | |
| 140 | 1 2 87 88 89 90 139 3 4 5 | prdsdsval3 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ℎ 𝐷 𝑔 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 141 | 140 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ℎ 𝐷 𝑔 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 142 | 138 141 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ℎ 𝐷 𝑔 ) ) |
| 143 | xrrege0 | ⊢ ( ( ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ∧ ( 0 ≤ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∧ ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ℎ 𝐷 𝑔 ) ) ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) | |
| 144 | 121 123 125 142 143 | syl22anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) |
| 145 | 119 144 | readdcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) + ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 146 | 79 82 85 57 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → 0 ≤ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) |
| 147 | xmettri2 | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( ( ℎ ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) +𝑒 ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ) | |
| 148 | 79 92 82 85 147 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) +𝑒 ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 149 | 119 144 | rexaddd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) +𝑒 ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) = ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) + ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 150 | 148 149 | breqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) + ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 151 | xrrege0 | ⊢ ( ( ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ∧ ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) + ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ ( 0 ≤ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∧ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) + ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) | |
| 152 | 86 145 146 150 151 | syl22anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) |
| 153 | readdcl | ⊢ ( ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) → ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ∈ ℝ ) | |
| 154 | 153 | 3ad2ant3 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ∈ ℝ ) |
| 155 | 154 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ∈ ℝ ) |
| 156 | 119 144 96 123 117 142 | le2addd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑓 ‘ 𝑥 ) ) + ( ( ℎ ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 157 | 152 145 155 150 156 | letrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 158 | 157 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 159 | 86 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 160 | breq1 | ⊢ ( 𝑧 = ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) → ( 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) ) | |
| 161 | 52 160 | ralrnmptw | ⊢ ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) ) |
| 162 | 159 161 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) ) |
| 163 | 158 162 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 164 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ) |
| 165 | 164 90 114 | fovcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ℎ 𝐷 𝑓 ) ∈ ( 0 [,] +∞ ) ) |
| 166 | elxrge0 | ⊢ ( ( ℎ 𝐷 𝑓 ) ∈ ( 0 [,] +∞ ) ↔ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ* ∧ 0 ≤ ( ℎ 𝐷 𝑓 ) ) ) | |
| 167 | 166 | simprbi | ⊢ ( ( ℎ 𝐷 𝑓 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( ℎ 𝐷 𝑓 ) ) |
| 168 | 165 167 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → 0 ≤ ( ℎ 𝐷 𝑓 ) ) |
| 169 | 164 90 139 | fovcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ℎ 𝐷 𝑔 ) ∈ ( 0 [,] +∞ ) ) |
| 170 | elxrge0 | ⊢ ( ( ℎ 𝐷 𝑔 ) ∈ ( 0 [,] +∞ ) ↔ ( ( ℎ 𝐷 𝑔 ) ∈ ℝ* ∧ 0 ≤ ( ℎ 𝐷 𝑔 ) ) ) | |
| 171 | 170 | simprbi | ⊢ ( ( ℎ 𝐷 𝑔 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( ℎ 𝐷 𝑔 ) ) |
| 172 | 169 171 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → 0 ≤ ( ℎ 𝐷 𝑔 ) ) |
| 173 | 95 122 168 172 | addge0d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → 0 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 174 | breq1 | ⊢ ( 𝑧 = 0 → ( 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ↔ 0 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) ) | |
| 175 | 44 174 | ralsn | ⊢ ( ∀ 𝑧 ∈ { 0 } 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ↔ 0 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 176 | 173 175 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ∀ 𝑧 ∈ { 0 } 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 177 | ralunb | ⊢ ( ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ↔ ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ∧ ∀ 𝑧 ∈ { 0 } 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) ) | |
| 178 | 163 176 177 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 179 | 40 | 3adantr3 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
| 180 | 179 | 3adant3 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
| 181 | 154 | rexrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ∈ ℝ* ) |
| 182 | supxrleub | ⊢ ( ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ∧ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ∈ ℝ* ) → ( sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ↔ ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) ) | |
| 183 | 180 181 182 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ↔ ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) ) |
| 184 | 178 183 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 185 | 78 184 | eqbrtrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ ( ( ℎ 𝐷 𝑓 ) ∈ ℝ ∧ ( ℎ 𝐷 𝑔 ) ∈ ℝ ) ) → ( 𝑓 𝐷 𝑔 ) ≤ ( ( ℎ 𝐷 𝑓 ) + ( ℎ 𝐷 𝑔 ) ) ) |
| 186 | 11 15 19 76 185 | isxmet2d | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |