This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmeteq0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) | |
| 2 | isxmet | ⊢ ( 𝑋 ∈ dom ∞Met → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
| 4 | 3 | ibi | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 5 | simpl | ⊢ ( ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) | |
| 6 | 5 | 2ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
| 7 | 4 6 | simpl2im | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
| 8 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐷 𝑦 ) = ( 𝐴 𝐷 𝑦 ) ) | |
| 9 | 8 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ ( 𝐴 𝐷 𝑦 ) = 0 ) ) |
| 10 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝐴 = 𝑦 ) ) | |
| 11 | 9 10 | bibi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ↔ ( ( 𝐴 𝐷 𝑦 ) = 0 ↔ 𝐴 = 𝑦 ) ) ) |
| 12 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐷 𝑦 ) = ( 𝐴 𝐷 𝐵 ) ) | |
| 13 | 12 | eqeq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐷 𝑦 ) = 0 ↔ ( 𝐴 𝐷 𝐵 ) = 0 ) ) |
| 14 | eqeq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 = 𝑦 ↔ 𝐴 = 𝐵 ) ) | |
| 15 | 13 14 | bibi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 𝐷 𝑦 ) = 0 ↔ 𝐴 = 𝑦 ) ↔ ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) ) |
| 16 | 11 15 | rspc2v | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) → ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) ) |
| 17 | 7 16 | syl5com | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) ) |
| 18 | 17 | 3impib | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) |