This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product metric is an extended metric. Eliminate disjoint variable conditions from prdsxmetlem . (Contributed by Mario Carneiro, 26-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsdsf.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| prdsdsf.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsdsf.v | ⊢ 𝑉 = ( Base ‘ 𝑅 ) | ||
| prdsdsf.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | ||
| prdsdsf.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | ||
| prdsdsf.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | ||
| prdsdsf.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) | ||
| prdsdsf.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ 𝑍 ) | ||
| prdsdsf.m | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) | ||
| Assertion | prdsxmet | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsdsf.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| 2 | prdsdsf.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsdsf.v | ⊢ 𝑉 = ( Base ‘ 𝑅 ) | |
| 4 | prdsdsf.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | |
| 5 | prdsdsf.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | |
| 6 | prdsdsf.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | |
| 7 | prdsdsf.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) | |
| 8 | prdsdsf.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ 𝑍 ) | |
| 9 | prdsdsf.m | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) | |
| 10 | nfcv | ⊢ Ⅎ 𝑦 𝑅 | |
| 11 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝑅 | |
| 12 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝑅 = ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) | |
| 13 | 10 11 12 | cbvmpt | ⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) = ( 𝑦 ∈ 𝐼 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) |
| 14 | 13 | oveq2i | ⊢ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) = ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) |
| 15 | 1 14 | eqtri | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) |
| 16 | eqid | ⊢ ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) = ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) | |
| 17 | eqid | ⊢ ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) × ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) ) = ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) × ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) ) | |
| 18 | 8 | elexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ V ) |
| 19 | 18 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ V ) |
| 20 | 11 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ∈ V |
| 21 | 12 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝑅 ∈ V ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ∈ V ) ) |
| 22 | 20 21 | rspc | ⊢ ( 𝑦 ∈ 𝐼 → ( ∀ 𝑥 ∈ 𝐼 𝑅 ∈ V → ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ∈ V ) ) |
| 23 | 19 22 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ∈ V ) |
| 24 | 9 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 25 | nfcv | ⊢ Ⅎ 𝑥 dist | |
| 26 | 25 11 | nffv | ⊢ Ⅎ 𝑥 ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) |
| 27 | nfcv | ⊢ Ⅎ 𝑥 Base | |
| 28 | 27 11 | nffv | ⊢ Ⅎ 𝑥 ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) |
| 29 | 28 28 | nfxp | ⊢ Ⅎ 𝑥 ( ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) × ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) |
| 30 | 26 29 | nfres | ⊢ Ⅎ 𝑥 ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) × ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) ) |
| 31 | nfcv | ⊢ Ⅎ 𝑥 ∞Met | |
| 32 | 31 28 | nffv | ⊢ Ⅎ 𝑥 ( ∞Met ‘ ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) |
| 33 | 30 32 | nfel | ⊢ Ⅎ 𝑥 ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) × ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) |
| 34 | 12 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( dist ‘ 𝑅 ) = ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) |
| 35 | 12 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( Base ‘ 𝑅 ) = ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) |
| 36 | 3 35 | eqtrid | ⊢ ( 𝑥 = 𝑦 → 𝑉 = ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) |
| 37 | 36 | sqxpeqd | ⊢ ( 𝑥 = 𝑦 → ( 𝑉 × 𝑉 ) = ( ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) × ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) ) |
| 38 | 34 37 | reseq12d | ⊢ ( 𝑥 = 𝑦 → ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) = ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) × ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) ) ) |
| 39 | 4 38 | eqtrid | ⊢ ( 𝑥 = 𝑦 → 𝐸 = ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) × ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) ) ) |
| 40 | 36 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( ∞Met ‘ 𝑉 ) = ( ∞Met ‘ ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) ) |
| 41 | 39 40 | eleq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ↔ ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) × ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) ) ) |
| 42 | 33 41 | rspc | ⊢ ( 𝑦 ∈ 𝐼 → ( ∀ 𝑥 ∈ 𝐼 𝐸 ∈ ( ∞Met ‘ 𝑉 ) → ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) × ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) ) ) |
| 43 | 24 42 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) × ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) ) |
| 44 | 15 2 16 17 5 6 7 23 43 | prdsxmetlem | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |