This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmettri2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) | |
| 2 | isxmet | ⊢ ( 𝑋 ∈ dom ∞Met → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
| 4 | 3 | ibi | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 5 | simpr | ⊢ ( ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) → ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) | |
| 6 | 5 | 2ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 7 | 4 6 | simpl2im | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 8 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐷 𝑦 ) = ( 𝐴 𝐷 𝑦 ) ) | |
| 9 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑧 𝐷 𝑥 ) = ( 𝑧 𝐷 𝐴 ) ) | |
| 10 | 9 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = ( ( 𝑧 𝐷 𝐴 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 11 | 8 10 | breq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ↔ ( 𝐴 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝐴 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 12 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐷 𝑦 ) = ( 𝐴 𝐷 𝐵 ) ) | |
| 13 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑧 𝐷 𝑦 ) = ( 𝑧 𝐷 𝐵 ) ) | |
| 14 | 13 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑧 𝐷 𝐴 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = ( ( 𝑧 𝐷 𝐴 ) +𝑒 ( 𝑧 𝐷 𝐵 ) ) ) |
| 15 | 12 14 | breq12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝐴 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ↔ ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝑧 𝐷 𝐴 ) +𝑒 ( 𝑧 𝐷 𝐵 ) ) ) ) |
| 16 | oveq1 | ⊢ ( 𝑧 = 𝐶 → ( 𝑧 𝐷 𝐴 ) = ( 𝐶 𝐷 𝐴 ) ) | |
| 17 | oveq1 | ⊢ ( 𝑧 = 𝐶 → ( 𝑧 𝐷 𝐵 ) = ( 𝐶 𝐷 𝐵 ) ) | |
| 18 | 16 17 | oveq12d | ⊢ ( 𝑧 = 𝐶 → ( ( 𝑧 𝐷 𝐴 ) +𝑒 ( 𝑧 𝐷 𝐵 ) ) = ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) |
| 19 | 18 | breq2d | ⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝑧 𝐷 𝐴 ) +𝑒 ( 𝑧 𝐷 𝐵 ) ) ↔ ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) ) |
| 20 | 11 15 19 | rspc3v | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) ) |
| 21 | 7 20 | syl5 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) ) |
| 22 | 21 | 3comr | ⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) ) |
| 23 | 22 | impcom | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) |