This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product metric is a function into the nonnegative extended reals. In general this means that it is not a metric but rather an *extended* metric (even when all the factors are metrics), but it will be a metric when restricted to regions where it does not take infinite values. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsdsf.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| prdsdsf.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsdsf.v | ⊢ 𝑉 = ( Base ‘ 𝑅 ) | ||
| prdsdsf.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | ||
| prdsdsf.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | ||
| prdsdsf.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | ||
| prdsdsf.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) | ||
| prdsdsf.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ 𝑍 ) | ||
| prdsdsf.m | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) | ||
| Assertion | prdsdsf | ⊢ ( 𝜑 → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsdsf.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| 2 | prdsdsf.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsdsf.v | ⊢ 𝑉 = ( Base ‘ 𝑅 ) | |
| 4 | prdsdsf.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | |
| 5 | prdsdsf.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | |
| 6 | prdsdsf.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | |
| 7 | prdsdsf.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) | |
| 8 | prdsdsf.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ 𝑍 ) | |
| 9 | prdsdsf.m | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) | |
| 10 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) | |
| 11 | 8 | elexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ V ) |
| 12 | 11 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ V ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ V ) |
| 14 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝑅 | |
| 15 | 14 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ∈ V |
| 16 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝑅 = ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) | |
| 17 | 16 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝑅 ∈ V ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ∈ V ) ) |
| 18 | 15 17 | rspc | ⊢ ( 𝑦 ∈ 𝐼 → ( ∀ 𝑥 ∈ 𝐼 𝑅 ∈ V → ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ∈ V ) ) |
| 19 | 13 18 | mpan9 | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ∈ V ) |
| 20 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) | |
| 21 | 20 | fvmpts | ⊢ ( ( 𝑦 ∈ 𝐼 ∧ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ∈ V ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) = ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) |
| 22 | 10 19 21 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) = ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) |
| 23 | 22 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) = ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) |
| 24 | 23 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ( 𝑔 ‘ 𝑦 ) ) ) |
| 25 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑆 ∈ 𝑊 ) |
| 26 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑋 ) |
| 27 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 ∈ 𝐵 ) | |
| 28 | 1 2 25 26 13 3 27 | prdsbascl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) |
| 29 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝑉 | |
| 30 | 29 | nfel2 | ⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 |
| 31 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) | |
| 32 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝑉 = ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) | |
| 33 | 31 32 | eleq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ↔ ( 𝑓 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) |
| 34 | 30 33 | rspc | ⊢ ( 𝑦 ∈ 𝐼 → ( ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 → ( 𝑓 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) |
| 35 | 28 34 | mpan9 | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) |
| 36 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 ∈ 𝐵 ) | |
| 37 | 1 2 25 26 13 3 36 | prdsbascl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) |
| 38 | 29 | nfel2 | ⊢ Ⅎ 𝑥 ( 𝑔 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 |
| 39 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑦 ) ) | |
| 40 | 39 32 | eleq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ↔ ( 𝑔 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) |
| 41 | 38 40 | rspc | ⊢ ( 𝑦 ∈ 𝐼 → ( ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 → ( 𝑔 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) |
| 42 | 37 41 | mpan9 | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) |
| 43 | 35 42 | ovresd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑦 ) ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ( 𝑔 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ( 𝑔 ‘ 𝑦 ) ) ) |
| 44 | 24 43 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑦 ) ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ( 𝑔 ‘ 𝑦 ) ) ) |
| 45 | 9 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 46 | 45 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 47 | nfcv | ⊢ Ⅎ 𝑥 dist | |
| 48 | 47 14 | nffv | ⊢ Ⅎ 𝑥 ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) |
| 49 | 29 29 | nfxp | ⊢ Ⅎ 𝑥 ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) |
| 50 | 48 49 | nfres | ⊢ Ⅎ 𝑥 ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) |
| 51 | nfcv | ⊢ Ⅎ 𝑥 ∞Met | |
| 52 | 51 29 | nffv | ⊢ Ⅎ 𝑥 ( ∞Met ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) |
| 53 | 50 52 | nfel | ⊢ Ⅎ 𝑥 ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ∈ ( ∞Met ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) |
| 54 | 16 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( dist ‘ 𝑅 ) = ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ) |
| 55 | 32 | sqxpeqd | ⊢ ( 𝑥 = 𝑦 → ( 𝑉 × 𝑉 ) = ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) |
| 56 | 54 55 | reseq12d | ⊢ ( 𝑥 = 𝑦 → ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) = ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ) |
| 57 | 4 56 | eqtrid | ⊢ ( 𝑥 = 𝑦 → 𝐸 = ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ) |
| 58 | 32 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( ∞Met ‘ 𝑉 ) = ( ∞Met ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) |
| 59 | 57 58 | eleq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ↔ ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ∈ ( ∞Met ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ) |
| 60 | 53 59 | rspc | ⊢ ( 𝑦 ∈ 𝐼 → ( ∀ 𝑥 ∈ 𝐼 𝐸 ∈ ( ∞Met ‘ 𝑉 ) → ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ∈ ( ∞Met ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ) |
| 61 | 46 60 | mpan9 | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ∈ ( ∞Met ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) |
| 62 | xmetcl | ⊢ ( ( ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ∈ ( ∞Met ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ∧ ( 𝑔 ‘ 𝑦 ) ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) → ( ( 𝑓 ‘ 𝑦 ) ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ( 𝑔 ‘ 𝑦 ) ) ∈ ℝ* ) | |
| 63 | 61 35 42 62 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑦 ) ( ( dist ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑅 ) ↾ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑉 × ⦋ 𝑦 / 𝑥 ⦌ 𝑉 ) ) ( 𝑔 ‘ 𝑦 ) ) ∈ ℝ* ) |
| 64 | 44 63 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ∈ ℝ* ) |
| 65 | 64 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) : 𝐼 ⟶ ℝ* ) |
| 66 | 65 | frnd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ⊆ ℝ* ) |
| 67 | 0xr | ⊢ 0 ∈ ℝ* | |
| 68 | 67 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 0 ∈ ℝ* ) |
| 69 | 68 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → { 0 } ⊆ ℝ* ) |
| 70 | 66 69 | unssd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
| 71 | supxrcl | ⊢ ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) ⊆ ℝ* → sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ℝ* ) | |
| 72 | 70 71 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ℝ* ) |
| 73 | ssun2 | ⊢ { 0 } ⊆ ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) | |
| 74 | c0ex | ⊢ 0 ∈ V | |
| 75 | 74 | snss | ⊢ ( 0 ∈ ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) ↔ { 0 } ⊆ ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) ) |
| 76 | 73 75 | mpbir | ⊢ 0 ∈ ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) |
| 77 | supxrub | ⊢ ( ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) ⊆ ℝ* ∧ 0 ∈ ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) ) → 0 ≤ sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) | |
| 78 | 70 76 77 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 0 ≤ sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 79 | elxrge0 | ⊢ ( sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ↔ ( sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ℝ* ∧ 0 ≤ sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) | |
| 80 | 72 78 79 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
| 81 | 80 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
| 82 | eqid | ⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) | |
| 83 | 82 | fmpo | ⊢ ( ∀ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ↔ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ) |
| 84 | 81 83 | sylib | ⊢ ( 𝜑 → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ) |
| 85 | 7 | mptexd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ∈ V ) |
| 86 | 8 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑍 ) |
| 87 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑍 → dom ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) = 𝐼 ) | |
| 88 | 86 87 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) = 𝐼 ) |
| 89 | 1 6 85 2 88 5 | prdsds | ⊢ ( 𝜑 → 𝐷 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) |
| 90 | 89 | feq1d | ⊢ ( 𝜑 → ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ↔ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ) ) |
| 91 | 84 90 | mpbird | ⊢ ( 𝜑 → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ) |