This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt2.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| prdsbasmpt2.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsbasmpt2.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsbasmpt2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsbasmpt2.r | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 ) | ||
| prdsdsval2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| prdsdsval2.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
| prdsdsval3.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| prdsdsval3.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝐾 × 𝐾 ) ) | ||
| prdsdsval3.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | ||
| Assertion | prdsdsval3 | ⊢ ( 𝜑 → ( 𝐹 𝐷 𝐺 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt2.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| 2 | prdsbasmpt2.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsbasmpt2.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdsbasmpt2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | prdsbasmpt2.r | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 ) | |
| 6 | prdsdsval2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 7 | prdsdsval2.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
| 8 | prdsdsval3.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 9 | prdsdsval3.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝐾 × 𝐾 ) ) | |
| 10 | prdsdsval3.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | |
| 11 | eqid | ⊢ ( dist ‘ 𝑅 ) = ( dist ‘ 𝑅 ) | |
| 12 | 1 2 3 4 5 6 7 11 10 | prdsdsval2 | ⊢ ( 𝜑 → ( 𝐹 𝐷 𝐺 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 13 | eqidd | ⊢ ( 𝜑 → 𝐼 = 𝐼 ) | |
| 14 | 1 2 3 4 5 8 6 | prdsbascl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ 𝐾 ) |
| 15 | 1 2 3 4 5 8 7 | prdsbascl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝐺 ‘ 𝑥 ) ∈ 𝐾 ) |
| 16 | 9 | oveqi | ⊢ ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝐾 × 𝐾 ) ) ( 𝐺 ‘ 𝑥 ) ) |
| 17 | ovres | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝐾 ) → ( ( 𝐹 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝐾 × 𝐾 ) ) ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) | |
| 18 | 16 17 | eqtrid | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐾 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝐾 ) → ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) |
| 19 | 18 | ex | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐾 → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐾 → ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 20 | 19 | ral2imi | ⊢ ( ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ 𝐾 → ( ∀ 𝑥 ∈ 𝐼 ( 𝐺 ‘ 𝑥 ) ∈ 𝐾 → ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 21 | 14 15 20 | sylc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) |
| 22 | mpteq12 | ⊢ ( ( 𝐼 = 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) ) | |
| 23 | 13 21 22 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 24 | 23 | rneqd | ⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) = ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 25 | 24 | uneq1d | ⊢ ( 𝜑 → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) ∪ { 0 } ) = ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) |
| 26 | 25 | supeq1d | ⊢ ( 𝜑 → sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 27 | 12 26 | eqtr4d | ⊢ ( 𝜑 → ( 𝐹 𝐷 𝐺 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |