This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample: D ( x , y ) = if ( x = y , 0 , -oo ) satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isxmetd.0 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| isxmetd.1 | ⊢ ( 𝜑 → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | ||
| isxmet2d.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 0 ≤ ( 𝑥 𝐷 𝑦 ) ) | ||
| isxmet2d.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ↔ 𝑥 = 𝑦 ) ) | ||
| isxmet2d.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ ∧ ( 𝑧 𝐷 𝑦 ) ∈ ℝ ) ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) | ||
| Assertion | isxmet2d | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isxmetd.0 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 2 | isxmetd.1 | ⊢ ( 𝜑 → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 3 | isxmet2d.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 0 ≤ ( 𝑥 𝐷 𝑦 ) ) | |
| 4 | isxmet2d.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ↔ 𝑥 = 𝑦 ) ) | |
| 5 | isxmet2d.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ ∧ ( 𝑧 𝐷 𝑦 ) ∈ ℝ ) ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) | |
| 6 | 2 | fovcdmda | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ) |
| 7 | 0xr | ⊢ 0 ∈ ℝ* | |
| 8 | xrletri3 | ⊢ ( ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ) ) ) | |
| 9 | 6 7 8 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ) ) ) |
| 10 | 3 | biantrud | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ↔ ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ) ) ) |
| 11 | 9 10 4 | 3bitr2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
| 12 | 5 | 3expa | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ ∧ ( 𝑧 𝐷 𝑦 ) ∈ ℝ ) ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) |
| 13 | rexadd | ⊢ ( ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ ∧ ( 𝑧 𝐷 𝑦 ) ∈ ℝ ) → ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) | |
| 14 | 13 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ ∧ ( 𝑧 𝐷 𝑦 ) ∈ ℝ ) ) → ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) |
| 15 | 12 14 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ ∧ ( 𝑧 𝐷 𝑦 ) ∈ ℝ ) ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 16 | 15 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) ∧ ( 𝑧 𝐷 𝑦 ) ∈ ℝ ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 17 | 6 | 3adantr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ) |
| 18 | pnfge | ⊢ ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ* → ( 𝑥 𝐷 𝑦 ) ≤ +∞ ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑦 ) ≤ +∞ ) |
| 20 | 19 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) ∧ ( 𝑧 𝐷 𝑦 ) = +∞ ) → ( 𝑥 𝐷 𝑦 ) ≤ +∞ ) |
| 21 | oveq2 | ⊢ ( ( 𝑧 𝐷 𝑦 ) = +∞ → ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = ( ( 𝑧 𝐷 𝑥 ) +𝑒 +∞ ) ) | |
| 22 | 2 | ffnd | ⊢ ( 𝜑 → 𝐷 Fn ( 𝑋 × 𝑋 ) ) |
| 23 | elxrge0 | ⊢ ( ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ) ) | |
| 24 | 6 3 23 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 25 | 24 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 26 | ffnov | ⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] +∞ ) ↔ ( 𝐷 Fn ( 𝑋 × 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,] +∞ ) ) ) | |
| 27 | 22 25 26 | sylanbrc | ⊢ ( 𝜑 → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] +∞ ) ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] +∞ ) ) |
| 29 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) | |
| 30 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) | |
| 31 | 28 29 30 | fovcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐷 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
| 32 | eliccxr | ⊢ ( ( 𝑧 𝐷 𝑥 ) ∈ ( 0 [,] +∞ ) → ( 𝑧 𝐷 𝑥 ) ∈ ℝ* ) | |
| 33 | 31 32 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐷 𝑥 ) ∈ ℝ* ) |
| 34 | renemnf | ⊢ ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ → ( 𝑧 𝐷 𝑥 ) ≠ -∞ ) | |
| 35 | xaddpnf1 | ⊢ ( ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ* ∧ ( 𝑧 𝐷 𝑥 ) ≠ -∞ ) → ( ( 𝑧 𝐷 𝑥 ) +𝑒 +∞ ) = +∞ ) | |
| 36 | 33 34 35 | syl2an | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) → ( ( 𝑧 𝐷 𝑥 ) +𝑒 +∞ ) = +∞ ) |
| 37 | 21 36 | sylan9eqr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) ∧ ( 𝑧 𝐷 𝑦 ) = +∞ ) → ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = +∞ ) |
| 38 | 20 37 | breqtrrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) ∧ ( 𝑧 𝐷 𝑦 ) = +∞ ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 39 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) | |
| 40 | 28 29 39 | fovcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐷 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 41 | eliccxr | ⊢ ( ( 𝑧 𝐷 𝑦 ) ∈ ( 0 [,] +∞ ) → ( 𝑧 𝐷 𝑦 ) ∈ ℝ* ) | |
| 42 | 40 41 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐷 𝑦 ) ∈ ℝ* ) |
| 43 | elxrge0 | ⊢ ( ( 𝑧 𝐷 𝑦 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑧 𝐷 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( 𝑧 𝐷 𝑦 ) ) ) | |
| 44 | 43 | simprbi | ⊢ ( ( 𝑧 𝐷 𝑦 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝑧 𝐷 𝑦 ) ) |
| 45 | 40 44 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 0 ≤ ( 𝑧 𝐷 𝑦 ) ) |
| 46 | ge0nemnf | ⊢ ( ( ( 𝑧 𝐷 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( 𝑧 𝐷 𝑦 ) ) → ( 𝑧 𝐷 𝑦 ) ≠ -∞ ) | |
| 47 | 42 45 46 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐷 𝑦 ) ≠ -∞ ) |
| 48 | 47 | a1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ¬ ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) → ( 𝑧 𝐷 𝑦 ) ≠ -∞ ) ) |
| 49 | 48 | necon4bd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐷 𝑦 ) = -∞ → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 50 | 49 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) → ( ( 𝑧 𝐷 𝑦 ) = -∞ → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 51 | 50 | imp | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) ∧ ( 𝑧 𝐷 𝑦 ) = -∞ ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 52 | 42 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) → ( 𝑧 𝐷 𝑦 ) ∈ ℝ* ) |
| 53 | elxr | ⊢ ( ( 𝑧 𝐷 𝑦 ) ∈ ℝ* ↔ ( ( 𝑧 𝐷 𝑦 ) ∈ ℝ ∨ ( 𝑧 𝐷 𝑦 ) = +∞ ∨ ( 𝑧 𝐷 𝑦 ) = -∞ ) ) | |
| 54 | 52 53 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) → ( ( 𝑧 𝐷 𝑦 ) ∈ ℝ ∨ ( 𝑧 𝐷 𝑦 ) = +∞ ∨ ( 𝑧 𝐷 𝑦 ) = -∞ ) ) |
| 55 | 16 38 51 54 | mpjao3dan | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 56 | 19 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) = +∞ ) → ( 𝑥 𝐷 𝑦 ) ≤ +∞ ) |
| 57 | oveq1 | ⊢ ( ( 𝑧 𝐷 𝑥 ) = +∞ → ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = ( +∞ +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) | |
| 58 | xaddpnf2 | ⊢ ( ( ( 𝑧 𝐷 𝑦 ) ∈ ℝ* ∧ ( 𝑧 𝐷 𝑦 ) ≠ -∞ ) → ( +∞ +𝑒 ( 𝑧 𝐷 𝑦 ) ) = +∞ ) | |
| 59 | 42 47 58 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( +∞ +𝑒 ( 𝑧 𝐷 𝑦 ) ) = +∞ ) |
| 60 | 57 59 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) = +∞ ) → ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = +∞ ) |
| 61 | 56 60 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) = +∞ ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 62 | elxrge0 | ⊢ ( ( 𝑧 𝐷 𝑥 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝑧 𝐷 𝑥 ) ) ) | |
| 63 | 62 | simprbi | ⊢ ( ( 𝑧 𝐷 𝑥 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝑧 𝐷 𝑥 ) ) |
| 64 | 31 63 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 0 ≤ ( 𝑧 𝐷 𝑥 ) ) |
| 65 | ge0nemnf | ⊢ ( ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝑧 𝐷 𝑥 ) ) → ( 𝑧 𝐷 𝑥 ) ≠ -∞ ) | |
| 66 | 33 64 65 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐷 𝑥 ) ≠ -∞ ) |
| 67 | 66 | a1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ¬ ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) → ( 𝑧 𝐷 𝑥 ) ≠ -∞ ) ) |
| 68 | 67 | necon4bd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐷 𝑥 ) = -∞ → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 69 | 68 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) = -∞ ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 70 | elxr | ⊢ ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ* ↔ ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ ∨ ( 𝑧 𝐷 𝑥 ) = +∞ ∨ ( 𝑧 𝐷 𝑥 ) = -∞ ) ) | |
| 71 | 33 70 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ ∨ ( 𝑧 𝐷 𝑥 ) = +∞ ∨ ( 𝑧 𝐷 𝑥 ) = -∞ ) ) |
| 72 | 55 61 69 71 | mpjao3dan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 73 | 1 2 11 72 | isxmetd | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |