This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Symmetry of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike ensymb ). (Contributed by BTernaryTau, 9-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ensymfib | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren | ⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 2 | 19.42v | ⊢ ( ∃ 𝑓 ( 𝐴 ∈ Fin ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ↔ ( 𝐴 ∈ Fin ∧ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) | |
| 3 | f1ocnv | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 4 | f1oenfirn | ⊢ ( ( 𝐴 ∈ Fin ∧ ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 ) → 𝐵 ≈ 𝐴 ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐵 ≈ 𝐴 ) |
| 6 | 5 | exlimiv | ⊢ ( ∃ 𝑓 ( 𝐴 ∈ Fin ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐵 ≈ 𝐴 ) |
| 7 | 2 6 | sylbir | ⊢ ( ( 𝐴 ∈ Fin ∧ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐵 ≈ 𝐴 ) |
| 8 | 1 7 | sylan2b | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) → 𝐵 ≈ 𝐴 ) |
| 9 | bren | ⊢ ( 𝐵 ≈ 𝐴 ↔ ∃ 𝑔 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 10 | 19.42v | ⊢ ( ∃ 𝑔 ( 𝐴 ∈ Fin ∧ 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) ↔ ( 𝐴 ∈ Fin ∧ ∃ 𝑔 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) ) | |
| 11 | f1ocnv | ⊢ ( 𝑔 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝑔 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 12 | f1oenfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ◡ 𝑔 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐴 ≈ 𝐵 ) | |
| 13 | 11 12 | sylan2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) → 𝐴 ≈ 𝐵 ) |
| 14 | 13 | exlimiv | ⊢ ( ∃ 𝑔 ( 𝐴 ∈ Fin ∧ 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) → 𝐴 ≈ 𝐵 ) |
| 15 | 10 14 | sylbir | ⊢ ( ( 𝐴 ∈ Fin ∧ ∃ 𝑔 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) → 𝐴 ≈ 𝐵 ) |
| 16 | 9 15 | sylan2b | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴 ) → 𝐴 ≈ 𝐵 ) |
| 17 | 8 16 | impbida | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴 ) ) |