This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A syllogism inference. (Contributed by NM, 20-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syld3an3.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
| syld3an3.2 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜃 ) → 𝜏 ) | ||
| Assertion | syld3an3 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syld3an3.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
| 2 | syld3an3.2 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜃 ) → 𝜏 ) | |
| 3 | simp1 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜑 ) | |
| 4 | simp2 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜓 ) | |
| 5 | 3 4 1 2 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜏 ) |