This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitivity of strict dominance and dominance when A is finite, proved without using the Axiom of Power Sets (unlike sdomdomtr ). (Contributed by BTernaryTau, 25-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdomdomtrfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≺ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | ⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵 ) | |
| 2 | domtrfil | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≼ 𝐶 ) | |
| 3 | 1 2 | syl3an2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≼ 𝐶 ) |
| 4 | simp1 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶 ) → 𝐴 ∈ Fin ) | |
| 5 | ensymfib | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≈ 𝐶 ↔ 𝐶 ≈ 𝐴 ) ) | |
| 6 | 5 | biimpa | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐶 ) → 𝐶 ≈ 𝐴 ) |
| 7 | 6 | 3adant2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶 ) → 𝐶 ≈ 𝐴 ) |
| 8 | endom | ⊢ ( 𝐶 ≈ 𝐴 → 𝐶 ≼ 𝐴 ) | |
| 9 | domtrfir | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐶 ≼ 𝐴 ) → 𝐵 ≼ 𝐴 ) | |
| 10 | 8 9 | syl3an3 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐶 ≈ 𝐴 ) → 𝐵 ≼ 𝐴 ) |
| 11 | 7 10 | syld3an3 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶 ) → 𝐵 ≼ 𝐴 ) |
| 12 | domfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ Fin ) | |
| 13 | domnsymfi | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐵 ≼ 𝐴 ) → ¬ 𝐴 ≺ 𝐵 ) | |
| 14 | 12 13 | sylancom | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴 ) → ¬ 𝐴 ≺ 𝐵 ) |
| 15 | 4 11 14 | syl2anc | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶 ) → ¬ 𝐴 ≺ 𝐵 ) |
| 16 | 15 | 3expia | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ) → ( 𝐴 ≈ 𝐶 → ¬ 𝐴 ≺ 𝐵 ) ) |
| 17 | 16 | con2d | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ) → ( 𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐶 ) ) |
| 18 | 17 | 3impia | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≺ 𝐵 ) → ¬ 𝐴 ≈ 𝐶 ) |
| 19 | 18 | 3com23 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → ¬ 𝐴 ≈ 𝐶 ) |
| 20 | brsdom | ⊢ ( 𝐴 ≺ 𝐶 ↔ ( 𝐴 ≼ 𝐶 ∧ ¬ 𝐴 ≈ 𝐶 ) ) | |
| 21 | 3 19 20 | sylanbrc | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≺ 𝐶 ) |