This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imadmrn | ⊢ ( 𝐴 “ dom 𝐴 ) = ran 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | 1 2 | opeldm | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴 ) |
| 4 | 3 | pm4.71i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐴 ) ) |
| 5 | ancom | ⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐴 ) ↔ ( 𝑥 ∈ dom 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) | |
| 6 | 4 5 | bitr2i | ⊢ ( ( 𝑥 ∈ dom 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ dom 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ↔ ∃ 𝑥 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) |
| 8 | 7 | abbii | ⊢ { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ dom 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) } = { 𝑦 ∣ ∃ 𝑥 〈 𝑥 , 𝑦 〉 ∈ 𝐴 } |
| 9 | dfima3 | ⊢ ( 𝐴 “ dom 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ dom 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) } | |
| 10 | dfrn3 | ⊢ ran 𝐴 = { 𝑦 ∣ ∃ 𝑥 〈 𝑥 , 𝑦 〉 ∈ 𝐴 } | |
| 11 | 8 9 10 | 3eqtr4i | ⊢ ( 𝐴 “ dom 𝐴 ) = ran 𝐴 |