This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of Pigeonhole Principle. If A is finite and B is a proper subset of A , the B is strictly less numerous than A . Stronger version of Corollary 6C of Enderton p. 135. (Contributed by NM, 22-Aug-2008) Avoid ax-pow . (Revised by BTernaryTau, 26-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | php3 | |- ( ( A e. Fin /\ B C. A ) -> B ~< A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi | |- ( A e. Fin <-> E. x e. _om A ~~ x ) |
|
| 2 | bren | |- ( A ~~ x <-> E. f f : A -1-1-onto-> x ) |
|
| 3 | pssss | |- ( B C. A -> B C_ A ) |
|
| 4 | imass2 | |- ( B C_ A -> ( f " B ) C_ ( f " A ) ) |
|
| 5 | 3 4 | syl | |- ( B C. A -> ( f " B ) C_ ( f " A ) ) |
| 6 | 5 | adantl | |- ( ( f : A -1-1-onto-> x /\ B C. A ) -> ( f " B ) C_ ( f " A ) ) |
| 7 | pssnel | |- ( B C. A -> E. y ( y e. A /\ -. y e. B ) ) |
|
| 8 | eldif | |- ( y e. ( A \ B ) <-> ( y e. A /\ -. y e. B ) ) |
|
| 9 | f1ofn | |- ( f : A -1-1-onto-> x -> f Fn A ) |
|
| 10 | difss | |- ( A \ B ) C_ A |
|
| 11 | fnfvima | |- ( ( f Fn A /\ ( A \ B ) C_ A /\ y e. ( A \ B ) ) -> ( f ` y ) e. ( f " ( A \ B ) ) ) |
|
| 12 | 11 | 3expia | |- ( ( f Fn A /\ ( A \ B ) C_ A ) -> ( y e. ( A \ B ) -> ( f ` y ) e. ( f " ( A \ B ) ) ) ) |
| 13 | 9 10 12 | sylancl | |- ( f : A -1-1-onto-> x -> ( y e. ( A \ B ) -> ( f ` y ) e. ( f " ( A \ B ) ) ) ) |
| 14 | dff1o3 | |- ( f : A -1-1-onto-> x <-> ( f : A -onto-> x /\ Fun `' f ) ) |
|
| 15 | imadif | |- ( Fun `' f -> ( f " ( A \ B ) ) = ( ( f " A ) \ ( f " B ) ) ) |
|
| 16 | 14 15 | simplbiim | |- ( f : A -1-1-onto-> x -> ( f " ( A \ B ) ) = ( ( f " A ) \ ( f " B ) ) ) |
| 17 | 16 | eleq2d | |- ( f : A -1-1-onto-> x -> ( ( f ` y ) e. ( f " ( A \ B ) ) <-> ( f ` y ) e. ( ( f " A ) \ ( f " B ) ) ) ) |
| 18 | 13 17 | sylibd | |- ( f : A -1-1-onto-> x -> ( y e. ( A \ B ) -> ( f ` y ) e. ( ( f " A ) \ ( f " B ) ) ) ) |
| 19 | n0i | |- ( ( f ` y ) e. ( ( f " A ) \ ( f " B ) ) -> -. ( ( f " A ) \ ( f " B ) ) = (/) ) |
|
| 20 | 18 19 | syl6 | |- ( f : A -1-1-onto-> x -> ( y e. ( A \ B ) -> -. ( ( f " A ) \ ( f " B ) ) = (/) ) ) |
| 21 | 8 20 | biimtrrid | |- ( f : A -1-1-onto-> x -> ( ( y e. A /\ -. y e. B ) -> -. ( ( f " A ) \ ( f " B ) ) = (/) ) ) |
| 22 | 21 | exlimdv | |- ( f : A -1-1-onto-> x -> ( E. y ( y e. A /\ -. y e. B ) -> -. ( ( f " A ) \ ( f " B ) ) = (/) ) ) |
| 23 | 22 | imp | |- ( ( f : A -1-1-onto-> x /\ E. y ( y e. A /\ -. y e. B ) ) -> -. ( ( f " A ) \ ( f " B ) ) = (/) ) |
| 24 | 7 23 | sylan2 | |- ( ( f : A -1-1-onto-> x /\ B C. A ) -> -. ( ( f " A ) \ ( f " B ) ) = (/) ) |
| 25 | ssdif0 | |- ( ( f " A ) C_ ( f " B ) <-> ( ( f " A ) \ ( f " B ) ) = (/) ) |
|
| 26 | 24 25 | sylnibr | |- ( ( f : A -1-1-onto-> x /\ B C. A ) -> -. ( f " A ) C_ ( f " B ) ) |
| 27 | dfpss3 | |- ( ( f " B ) C. ( f " A ) <-> ( ( f " B ) C_ ( f " A ) /\ -. ( f " A ) C_ ( f " B ) ) ) |
|
| 28 | 6 26 27 | sylanbrc | |- ( ( f : A -1-1-onto-> x /\ B C. A ) -> ( f " B ) C. ( f " A ) ) |
| 29 | imadmrn | |- ( f " dom f ) = ran f |
|
| 30 | f1odm | |- ( f : A -1-1-onto-> x -> dom f = A ) |
|
| 31 | 30 | imaeq2d | |- ( f : A -1-1-onto-> x -> ( f " dom f ) = ( f " A ) ) |
| 32 | f1ofo | |- ( f : A -1-1-onto-> x -> f : A -onto-> x ) |
|
| 33 | forn | |- ( f : A -onto-> x -> ran f = x ) |
|
| 34 | 32 33 | syl | |- ( f : A -1-1-onto-> x -> ran f = x ) |
| 35 | 29 31 34 | 3eqtr3a | |- ( f : A -1-1-onto-> x -> ( f " A ) = x ) |
| 36 | 35 | psseq2d | |- ( f : A -1-1-onto-> x -> ( ( f " B ) C. ( f " A ) <-> ( f " B ) C. x ) ) |
| 37 | 36 | adantr | |- ( ( f : A -1-1-onto-> x /\ B C. A ) -> ( ( f " B ) C. ( f " A ) <-> ( f " B ) C. x ) ) |
| 38 | 28 37 | mpbid | |- ( ( f : A -1-1-onto-> x /\ B C. A ) -> ( f " B ) C. x ) |
| 39 | php2 | |- ( ( x e. _om /\ ( f " B ) C. x ) -> ( f " B ) ~< x ) |
|
| 40 | 38 39 | sylan2 | |- ( ( x e. _om /\ ( f : A -1-1-onto-> x /\ B C. A ) ) -> ( f " B ) ~< x ) |
| 41 | nnfi | |- ( x e. _om -> x e. Fin ) |
|
| 42 | f1of1 | |- ( f : A -1-1-onto-> x -> f : A -1-1-> x ) |
|
| 43 | f1ores | |- ( ( f : A -1-1-> x /\ B C_ A ) -> ( f |` B ) : B -1-1-onto-> ( f " B ) ) |
|
| 44 | 42 3 43 | syl2an | |- ( ( f : A -1-1-onto-> x /\ B C. A ) -> ( f |` B ) : B -1-1-onto-> ( f " B ) ) |
| 45 | vex | |- f e. _V |
|
| 46 | 45 | resex | |- ( f |` B ) e. _V |
| 47 | f1oeq1 | |- ( y = ( f |` B ) -> ( y : B -1-1-onto-> ( f " B ) <-> ( f |` B ) : B -1-1-onto-> ( f " B ) ) ) |
|
| 48 | 46 47 | spcev | |- ( ( f |` B ) : B -1-1-onto-> ( f " B ) -> E. y y : B -1-1-onto-> ( f " B ) ) |
| 49 | bren | |- ( B ~~ ( f " B ) <-> E. y y : B -1-1-onto-> ( f " B ) ) |
|
| 50 | 48 49 | sylibr | |- ( ( f |` B ) : B -1-1-onto-> ( f " B ) -> B ~~ ( f " B ) ) |
| 51 | 44 50 | syl | |- ( ( f : A -1-1-onto-> x /\ B C. A ) -> B ~~ ( f " B ) ) |
| 52 | endom | |- ( B ~~ ( f " B ) -> B ~<_ ( f " B ) ) |
|
| 53 | sdomdom | |- ( ( f " B ) ~< x -> ( f " B ) ~<_ x ) |
|
| 54 | domfi | |- ( ( x e. Fin /\ ( f " B ) ~<_ x ) -> ( f " B ) e. Fin ) |
|
| 55 | 53 54 | sylan2 | |- ( ( x e. Fin /\ ( f " B ) ~< x ) -> ( f " B ) e. Fin ) |
| 56 | 55 | 3adant2 | |- ( ( x e. Fin /\ B ~<_ ( f " B ) /\ ( f " B ) ~< x ) -> ( f " B ) e. Fin ) |
| 57 | domfi | |- ( ( ( f " B ) e. Fin /\ B ~<_ ( f " B ) ) -> B e. Fin ) |
|
| 58 | 57 | 3adant3 | |- ( ( ( f " B ) e. Fin /\ B ~<_ ( f " B ) /\ ( f " B ) ~< x ) -> B e. Fin ) |
| 59 | domsdomtrfi | |- ( ( B e. Fin /\ B ~<_ ( f " B ) /\ ( f " B ) ~< x ) -> B ~< x ) |
|
| 60 | 58 59 | syld3an1 | |- ( ( ( f " B ) e. Fin /\ B ~<_ ( f " B ) /\ ( f " B ) ~< x ) -> B ~< x ) |
| 61 | 56 60 | syld3an1 | |- ( ( x e. Fin /\ B ~<_ ( f " B ) /\ ( f " B ) ~< x ) -> B ~< x ) |
| 62 | 52 61 | syl3an2 | |- ( ( x e. Fin /\ B ~~ ( f " B ) /\ ( f " B ) ~< x ) -> B ~< x ) |
| 63 | 62 | 3expia | |- ( ( x e. Fin /\ B ~~ ( f " B ) ) -> ( ( f " B ) ~< x -> B ~< x ) ) |
| 64 | 41 51 63 | syl2an | |- ( ( x e. _om /\ ( f : A -1-1-onto-> x /\ B C. A ) ) -> ( ( f " B ) ~< x -> B ~< x ) ) |
| 65 | 40 64 | mpd | |- ( ( x e. _om /\ ( f : A -1-1-onto-> x /\ B C. A ) ) -> B ~< x ) |
| 66 | 65 | exp32 | |- ( x e. _om -> ( f : A -1-1-onto-> x -> ( B C. A -> B ~< x ) ) ) |
| 67 | 66 | exlimdv | |- ( x e. _om -> ( E. f f : A -1-1-onto-> x -> ( B C. A -> B ~< x ) ) ) |
| 68 | 2 67 | biimtrid | |- ( x e. _om -> ( A ~~ x -> ( B C. A -> B ~< x ) ) ) |
| 69 | ensymfib | |- ( x e. Fin -> ( x ~~ A <-> A ~~ x ) ) |
|
| 70 | 69 | adantr | |- ( ( x e. Fin /\ B ~< x ) -> ( x ~~ A <-> A ~~ x ) ) |
| 71 | 70 | biimp3ar | |- ( ( x e. Fin /\ B ~< x /\ A ~~ x ) -> x ~~ A ) |
| 72 | endom | |- ( x ~~ A -> x ~<_ A ) |
|
| 73 | sdomdom | |- ( B ~< x -> B ~<_ x ) |
|
| 74 | domfi | |- ( ( x e. Fin /\ B ~<_ x ) -> B e. Fin ) |
|
| 75 | 73 74 | sylan2 | |- ( ( x e. Fin /\ B ~< x ) -> B e. Fin ) |
| 76 | 75 | 3adant3 | |- ( ( x e. Fin /\ B ~< x /\ x ~<_ A ) -> B e. Fin ) |
| 77 | sdomdomtrfi | |- ( ( B e. Fin /\ B ~< x /\ x ~<_ A ) -> B ~< A ) |
|
| 78 | 76 77 | syld3an1 | |- ( ( x e. Fin /\ B ~< x /\ x ~<_ A ) -> B ~< A ) |
| 79 | 72 78 | syl3an3 | |- ( ( x e. Fin /\ B ~< x /\ x ~~ A ) -> B ~< A ) |
| 80 | 71 79 | syld3an3 | |- ( ( x e. Fin /\ B ~< x /\ A ~~ x ) -> B ~< A ) |
| 81 | 41 80 | syl3an1 | |- ( ( x e. _om /\ B ~< x /\ A ~~ x ) -> B ~< A ) |
| 82 | 81 | 3com23 | |- ( ( x e. _om /\ A ~~ x /\ B ~< x ) -> B ~< A ) |
| 83 | 82 | 3exp | |- ( x e. _om -> ( A ~~ x -> ( B ~< x -> B ~< A ) ) ) |
| 84 | 68 83 | syldd | |- ( x e. _om -> ( A ~~ x -> ( B C. A -> B ~< A ) ) ) |
| 85 | 84 | rexlimiv | |- ( E. x e. _om A ~~ x -> ( B C. A -> B ~< A ) ) |
| 86 | 1 85 | sylbi | |- ( A e. Fin -> ( B C. A -> B ~< A ) ) |
| 87 | 86 | imp | |- ( ( A e. Fin /\ B C. A ) -> B ~< A ) |