This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998) Avoid ax-pow . (Revised by BTernaryTau, 20-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | php2 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnfi | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) | |
| 2 | pssss | ⊢ ( 𝐵 ⊊ 𝐴 → 𝐵 ⊆ 𝐴 ) | |
| 3 | ssdomfi | ⊢ ( 𝐴 ∈ Fin → ( 𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴 ) ) | |
| 4 | 3 | imp | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ≼ 𝐴 ) |
| 5 | 1 2 4 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≼ 𝐴 ) |
| 6 | php | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ¬ 𝐴 ≈ 𝐵 ) | |
| 7 | ensymfib | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴 ) ) | |
| 8 | 7 | biimprd | ⊢ ( 𝐴 ∈ Fin → ( 𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵 ) ) |
| 9 | 1 8 | syl | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ( 𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵 ) ) |
| 11 | 6 10 | mtod | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ¬ 𝐵 ≈ 𝐴 ) |
| 12 | brsdom | ⊢ ( 𝐵 ≺ 𝐴 ↔ ( 𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴 ) ) | |
| 13 | 5 11 12 | sylanbrc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) |