This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative is a function, whenever it is defined relative to a perfect subset of the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | perfdvf.1 | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| Assertion | perfdvf | ⊢ ( ( 𝐾 ↾t 𝑆 ) ∈ Perf → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | perfdvf.1 | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 2 | df-dv | ⊢ D = ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) | |
| 3 | 2 | dmmpossx | ⊢ dom D ⊆ ∪ 𝑠 ∈ 𝒫 ℂ ( { 𝑠 } × ( ℂ ↑pm 𝑠 ) ) |
| 4 | simpl | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → 〈 𝑆 , 𝐹 〉 ∈ dom D ) | |
| 5 | 3 4 | sselid | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → 〈 𝑆 , 𝐹 〉 ∈ ∪ 𝑠 ∈ 𝒫 ℂ ( { 𝑠 } × ( ℂ ↑pm 𝑠 ) ) ) |
| 6 | oveq2 | ⊢ ( 𝑠 = 𝑆 → ( ℂ ↑pm 𝑠 ) = ( ℂ ↑pm 𝑆 ) ) | |
| 7 | 6 | opeliunxp2 | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ ∪ 𝑠 ∈ 𝒫 ℂ ( { 𝑠 } × ( ℂ ↑pm 𝑠 ) ) ↔ ( 𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) |
| 8 | 5 7 | sylib | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) |
| 9 | 8 | simprd | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
| 10 | cnex | ⊢ ℂ ∈ V | |
| 11 | 8 | simpld | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → 𝑆 ∈ 𝒫 ℂ ) |
| 12 | elpm2g | ⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ ) → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) ) | |
| 13 | 10 11 12 | sylancr | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) ) |
| 14 | 9 13 | mpbid | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) |
| 15 | 14 | simpld | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 16 | 15 | adantr | ⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 17 | 3 | sseli | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → 〈 𝑆 , 𝐹 〉 ∈ ∪ 𝑠 ∈ 𝒫 ℂ ( { 𝑠 } × ( ℂ ↑pm 𝑠 ) ) ) |
| 18 | 17 7 | sylib | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) |
| 19 | 18 | simprd | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
| 20 | 18 | simpld | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → 𝑆 ∈ 𝒫 ℂ ) |
| 21 | 10 20 12 | sylancr | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) ) |
| 22 | 19 21 | mpbid | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) |
| 23 | 22 | simprd | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → dom 𝐹 ⊆ 𝑆 ) |
| 24 | 23 | adantr | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → dom 𝐹 ⊆ 𝑆 ) |
| 25 | 11 | elpwid | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → 𝑆 ⊆ ℂ ) |
| 26 | 24 25 | sstrd | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → dom 𝐹 ⊆ ℂ ) |
| 27 | 26 | adantr | ⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) → dom 𝐹 ⊆ ℂ ) |
| 28 | 1 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 29 | resttopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 30 | 28 25 29 | sylancr | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 31 | topontop | ⊢ ( ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → ( 𝐾 ↾t 𝑆 ) ∈ Top ) | |
| 32 | 30 31 | syl | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝐾 ↾t 𝑆 ) ∈ Top ) |
| 33 | toponuni | ⊢ ( ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ ( 𝐾 ↾t 𝑆 ) ) | |
| 34 | 30 33 | syl | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → 𝑆 = ∪ ( 𝐾 ↾t 𝑆 ) ) |
| 35 | 24 34 | sseqtrd | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → dom 𝐹 ⊆ ∪ ( 𝐾 ↾t 𝑆 ) ) |
| 36 | eqid | ⊢ ∪ ( 𝐾 ↾t 𝑆 ) = ∪ ( 𝐾 ↾t 𝑆 ) | |
| 37 | 36 | ntrss2 | ⊢ ( ( ( 𝐾 ↾t 𝑆 ) ∈ Top ∧ dom 𝐹 ⊆ ∪ ( 𝐾 ↾t 𝑆 ) ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ dom 𝐹 ) |
| 38 | 32 35 37 | syl2anc | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ dom 𝐹 ) |
| 39 | 38 | sselda | ⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) → 𝑥 ∈ dom 𝐹 ) |
| 40 | 16 27 39 | dvlem | ⊢ ( ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ∈ ℂ ) |
| 41 | 40 | fmpttd | ⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) → ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) : ( dom 𝐹 ∖ { 𝑥 } ) ⟶ ℂ ) |
| 42 | 27 | ssdifssd | ⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) → ( dom 𝐹 ∖ { 𝑥 } ) ⊆ ℂ ) |
| 43 | 36 | ntrss3 | ⊢ ( ( ( 𝐾 ↾t 𝑆 ) ∈ Top ∧ dom 𝐹 ⊆ ∪ ( 𝐾 ↾t 𝑆 ) ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ ∪ ( 𝐾 ↾t 𝑆 ) ) |
| 44 | 32 35 43 | syl2anc | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ ∪ ( 𝐾 ↾t 𝑆 ) ) |
| 45 | 44 34 | sseqtrrd | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ 𝑆 ) |
| 46 | restabs | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ 𝑆 ∧ 𝑆 ∈ 𝒫 ℂ ) → ( ( 𝐾 ↾t 𝑆 ) ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) = ( 𝐾 ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ) | |
| 47 | 28 45 11 46 | mp3an2i | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( 𝐾 ↾t 𝑆 ) ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) = ( 𝐾 ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ) |
| 48 | simpr | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝐾 ↾t 𝑆 ) ∈ Perf ) | |
| 49 | 36 | ntropn | ⊢ ( ( ( 𝐾 ↾t 𝑆 ) ∈ Top ∧ dom 𝐹 ⊆ ∪ ( 𝐾 ↾t 𝑆 ) ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ∈ ( 𝐾 ↾t 𝑆 ) ) |
| 50 | 32 35 49 | syl2anc | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ∈ ( 𝐾 ↾t 𝑆 ) ) |
| 51 | eqid | ⊢ ( ( 𝐾 ↾t 𝑆 ) ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) = ( ( 𝐾 ↾t 𝑆 ) ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) | |
| 52 | 36 51 | perfopn | ⊢ ( ( ( 𝐾 ↾t 𝑆 ) ∈ Perf ∧ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ∈ ( 𝐾 ↾t 𝑆 ) ) → ( ( 𝐾 ↾t 𝑆 ) ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ∈ Perf ) |
| 53 | 48 50 52 | syl2anc | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( 𝐾 ↾t 𝑆 ) ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ∈ Perf ) |
| 54 | 47 53 | eqeltrrd | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝐾 ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ∈ Perf ) |
| 55 | 1 | cnfldtop | ⊢ 𝐾 ∈ Top |
| 56 | 45 25 | sstrd | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ ℂ ) |
| 57 | 28 | toponunii | ⊢ ℂ = ∪ 𝐾 |
| 58 | eqid | ⊢ ( 𝐾 ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) = ( 𝐾 ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) | |
| 59 | 57 58 | restperf | ⊢ ( ( 𝐾 ∈ Top ∧ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ ℂ ) → ( ( 𝐾 ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ∈ Perf ↔ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ ( ( limPt ‘ 𝐾 ) ‘ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ) ) |
| 60 | 55 56 59 | sylancr | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( 𝐾 ↾t ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ∈ Perf ↔ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ ( ( limPt ‘ 𝐾 ) ‘ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ) ) |
| 61 | 54 60 | mpbid | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ ( ( limPt ‘ 𝐾 ) ‘ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ) |
| 62 | 57 | lpss3 | ⊢ ( ( 𝐾 ∈ Top ∧ dom 𝐹 ⊆ ℂ ∧ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ dom 𝐹 ) → ( ( limPt ‘ 𝐾 ) ‘ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ⊆ ( ( limPt ‘ 𝐾 ) ‘ dom 𝐹 ) ) |
| 63 | 55 26 38 62 | mp3an2i | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( limPt ‘ 𝐾 ) ‘ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) ⊆ ( ( limPt ‘ 𝐾 ) ‘ dom 𝐹 ) ) |
| 64 | 61 63 | sstrd | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ⊆ ( ( limPt ‘ 𝐾 ) ‘ dom 𝐹 ) ) |
| 65 | 64 | sselda | ⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) → 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ dom 𝐹 ) ) |
| 66 | 57 | lpdifsn | ⊢ ( ( 𝐾 ∈ Top ∧ dom 𝐹 ⊆ ℂ ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ dom 𝐹 ) ↔ 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) |
| 67 | 55 27 66 | sylancr | ⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ dom 𝐹 ) ↔ 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) |
| 68 | 65 67 | mpbid | ⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) → 𝑥 ∈ ( ( limPt ‘ 𝐾 ) ‘ ( dom 𝐹 ∖ { 𝑥 } ) ) ) |
| 69 | 41 42 68 1 | limcmo | ⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ) → ∃* 𝑦 𝑦 ∈ ( ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) |
| 70 | 69 | ex | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) → ∃* 𝑦 𝑦 ∈ ( ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
| 71 | moanimv | ⊢ ( ∃* 𝑦 ( 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ↔ ( 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) → ∃* 𝑦 𝑦 ∈ ( ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) | |
| 72 | 70 71 | sylibr | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ∃* 𝑦 ( 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
| 73 | eqid | ⊢ ( 𝐾 ↾t 𝑆 ) = ( 𝐾 ↾t 𝑆 ) | |
| 74 | eqid | ⊢ ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) | |
| 75 | 73 1 74 25 15 24 | eldv | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ↔ ( 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) ) |
| 76 | 75 | mobidv | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ∃* 𝑦 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ↔ ∃* 𝑦 ( 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ dom 𝐹 ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( dom 𝐹 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) ) |
| 77 | 72 76 | mpbird | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ∃* 𝑦 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) |
| 78 | 77 | alrimiv | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ∀ 𝑥 ∃* 𝑦 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) |
| 79 | reldv | ⊢ Rel ( 𝑆 D 𝐹 ) | |
| 80 | dffun6 | ⊢ ( Fun ( 𝑆 D 𝐹 ) ↔ ( Rel ( 𝑆 D 𝐹 ) ∧ ∀ 𝑥 ∃* 𝑦 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) | |
| 81 | 79 80 | mpbiran | ⊢ ( Fun ( 𝑆 D 𝐹 ) ↔ ∀ 𝑥 ∃* 𝑦 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) |
| 82 | 78 81 | sylibr | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → Fun ( 𝑆 D 𝐹 ) ) |
| 83 | 82 | funfnd | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝑆 D 𝐹 ) Fn dom ( 𝑆 D 𝐹 ) ) |
| 84 | vex | ⊢ 𝑦 ∈ V | |
| 85 | 84 | elrn | ⊢ ( 𝑦 ∈ ran ( 𝑆 D 𝐹 ) ↔ ∃ 𝑥 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) |
| 86 | 25 15 24 | dvcl | ⊢ ( ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑦 ∈ ℂ ) |
| 87 | 86 | ex | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝑥 ( 𝑆 D 𝐹 ) 𝑦 → 𝑦 ∈ ℂ ) ) |
| 88 | 87 | exlimdv | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( ∃ 𝑥 𝑥 ( 𝑆 D 𝐹 ) 𝑦 → 𝑦 ∈ ℂ ) ) |
| 89 | 85 88 | biimtrid | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝑦 ∈ ran ( 𝑆 D 𝐹 ) → 𝑦 ∈ ℂ ) ) |
| 90 | 89 | ssrdv | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ran ( 𝑆 D 𝐹 ) ⊆ ℂ ) |
| 91 | df-f | ⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ( ( 𝑆 D 𝐹 ) Fn dom ( 𝑆 D 𝐹 ) ∧ ran ( 𝑆 D 𝐹 ) ⊆ ℂ ) ) | |
| 92 | 83 90 91 | sylanbrc | ⊢ ( ( 〈 𝑆 , 𝐹 〉 ∈ dom D ∧ ( 𝐾 ↾t 𝑆 ) ∈ Perf ) → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 93 | 92 | ex | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → ( ( 𝐾 ↾t 𝑆 ) ∈ Perf → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) ) |
| 94 | f0 | ⊢ ∅ : ∅ ⟶ ℂ | |
| 95 | df-ov | ⊢ ( 𝑆 D 𝐹 ) = ( D ‘ 〈 𝑆 , 𝐹 〉 ) | |
| 96 | ndmfv | ⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → ( D ‘ 〈 𝑆 , 𝐹 〉 ) = ∅ ) | |
| 97 | 95 96 | eqtrid | ⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝑆 D 𝐹 ) = ∅ ) |
| 98 | 97 | dmeqd | ⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → dom ( 𝑆 D 𝐹 ) = dom ∅ ) |
| 99 | dm0 | ⊢ dom ∅ = ∅ | |
| 100 | 98 99 | eqtrdi | ⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → dom ( 𝑆 D 𝐹 ) = ∅ ) |
| 101 | 97 100 | feq12d | ⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ∅ : ∅ ⟶ ℂ ) ) |
| 102 | 94 101 | mpbiri | ⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 103 | 102 | a1d | ⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → ( ( 𝐾 ↾t 𝑆 ) ∈ Perf → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) ) |
| 104 | 93 103 | pm2.61i | ⊢ ( ( 𝐾 ↾t 𝑆 ) ∈ Perf → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |